Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation
详细信息    查看全文
  • 作者:Eduardo Mariscal-Muñoz ; Carlos A. S. Costa…
  • 关键词:Titanium implants ; Osteoblast ; Bone ; Laser
  • 刊名:Clinical Oral Investigations
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:20
  • 期:3
  • 页码:503-511
  • 全文大小:687 KB
  • 参考文献:1.Krischak GD, Gebhard F, Mohr W, Krivan V, Ignatius A, Beck A, Wachter NJ, Reuter P, Arand M, Kinzl L, Claes LE (2004) Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates. Arch Orthop Trauma Surg 124:104–113CrossRef PubMed
    2.Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101. doi:10.​1007/​s005860100282 CrossRef PubMed PubMedCentral
    3.Esposito M, Grusovin MG, Willings M, Coulthard P, Worthington HV (2007) The effectiveness of immediate, early, and conventional loading of dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants 22:893–904PubMed
    4.Khang D, Choi J, Im YM, Kim YJ, Jang JH, Kang SS, Nam TH, Song J, Park JW (2012) Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 33:5997–6007. doi:10.​1016/​j.​biomaterials.​2012.​05.​005 CrossRef PubMed
    5.Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, Boyan BD, Schwartz Z (2012) Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res 27:1773–83. doi:10.​1002/​jbmr.​1628 CrossRef PubMed
    6.Khan MR, Donos N, Salih V, Brett PM (2012) The enhanced modulation of key bone matrix components by modified Titanium implant surfaces. Bone 50:1–8. doi:10.​1016/​j.​bone.​2011.​07.​040 CrossRef PubMed
    7.Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, Schwartz Z, Sandhage KH, Boyan BD (2012) Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials 33:8986–94. doi:10.​1016/​j.​biomaterials.​2012.​08.​059 CrossRef PubMed PubMedCentral
    8.Dalby M, Gadegaard N, Tare R, Andar A, Riehle M, Herzyk P, Wilkinson C, Oreffo R (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003. doi:10.​1038/​nmat2013 CrossRef PubMed
    9.Harle J, Salih V, Olsen I, Brett P, Jones F, Tonetti M (2004) Gene expression profiling of bone cells on smooth and rough titanium surfaces. J Mater Sci Mater Med 15:1255–8CrossRef PubMed
    10.Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M (2004) Roughness response genes in osteoblasts. Bone 35:124–33. doi:10.​1016/​j.​bone.​2004.​03.​009 CrossRef PubMed
    11.Park JW, Kim YJ, Park CH, Lee DH, Ko YG, Jang JH, Lee CS (2009) Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater 5:3272–80. doi:10.​1016/​j.​actbio.​2009.​04.​038 CrossRef PubMed
    12.Butz F, Aita H, Wang CJ, Ogawa T (2006) Harder and stiffer bone osseointegrated to roughened titanium. J Dent Res 85:560–5CrossRef PubMed
    13.Saruwatari L, Aita H, Butz F, Nakamura HK, Ouyang J, Yang Y, Chiou WA, Ogawa T (2005) Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure. J Bone Miner Res 20:2002–16. doi:10.​1359/​jbmr.​050703 CrossRef PubMed
    14.Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20(Suppl 4):172–84. doi:10.​1111/​j.​1600-0501.​2009.​01775.​x CrossRef PubMed
    15.Bonsignore LA, Colbrunn RW, Tatro JM, Messerschmitt PJ, Hernandez CJ, Goldberg VM, Stewart MC, Greenfield EM (2011) Surface contaminants inhibit osseointegration in a novel murine model. Bone 49:923–30. doi:10.​1016/​j.​bone.​2011.​07.​013 CrossRef PubMed PubMedCentral
    16.Pető G, Karacs A, Pászti Z, Guczi L, Divinyi T, Joób A (2002) Surface treatment of screw shaped titanium dental implants by high intensity laser pulses. Appl Surf Sci 186:7–13. doi:10.​1016/​S0169-4332(01)00769-3 CrossRef
    17.Gaggl A, Schultes G, Muller WD, Karcher H (2000) Scanning electron microscopical analysis of laser-treated titanium implant surfaces--a comparative study. Biomaterials 21:1067–73CrossRef PubMed
    18.Steinemann SG (1998) Titanium--the material of choice? Periodontol 2000(17):7–21CrossRef
    19.Ciganovic J, Stasic J, Gakovic B, Momcilovic M, Milovanovic D, Bokorov M, Trtica M (2012) Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres—comparative study. Appl Surf Sci 258:2741–2748. doi:10.​1016/​j.​apsusc.​2011.​10.​125 CrossRef
    20.Souza FA, Queiroz TP, Guastaldi AC, Garcia-Junior IR, Magro-Filho O, Nishioka RS, Sisti KE, Sonoda CK (2012) Comparative in vivo study of commercially pure Ti implants with surfaces modified by laser with and without silicate deposition: biomechanical and scanning electron microscopy analysis. J Biomed Mater Res B Appl Biomater 101:76–84. doi:10.​1002/​jbm.​b.​32818 PubMed
    21.Brånemark R, Emanuelsson L, Palmquist A, Thomsen P (2011) Bone response to laser-induced micro- and nano-size titanium surface features. Nanomedicine 7:220–7. doi:10.​1016/​j.​nano.​2010.​10.​006 PubMed
    22.Ayubianmarkazi N, Karimi M, Koohkan S, Sanasa A, Foroutan T (2015) An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells on SLA titanium surfaces irradiated by different powers of CO lasers. Lasers Med Sci. doi:10.​1007/​s10103-015-1756-z PubMed
    23.Boonekamp PMHJ, Hamilton JW, Cohn D, Jilka RL (1984) Effects of culture on the hormone responsiveness of bone cells isolated by improved sequential digestion procedure. Proc K Ned Akad Wet 87:371–82
    24.Galli C, Macaluso GM, Elezi E, Ravanetti F, Cacchioli A, Gualini G, Passeri G (2011) The effects of Er:YAG laser treatment on titanium surface profile and osteoblastic cell activity: an in vitro study. J Periodontol 82:1169–77. doi:10.​1902/​jop.​2010.​100428 CrossRef PubMed
    25.Hallgren C, Reimers H, Chakarov D, Gold J, Wennerberg A (2003) An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials 24:701–710. doi:10.​1016/​S0142-9612(02)00266-1 CrossRef PubMed
    26.Prodanov L, Lamers E, Wolke J, Huiberts R, Jansen J, Walboomers X (2013) In vivo comparison between laser-treated and grit blasted/acid etched titanium. Clin Oral Implants Res 25:234–9. doi:10.​1111/​clr.​12109 CrossRef PubMed
    27.Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74PubMed
    28.Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Massari L, Brunelli G, Carinci F (2007) Anatase coating improves implant osseointegration in vivo. J Craniofac Surg 18:806–810. doi:10.​1097/​scs.​0b013e3180a7728f​ CrossRef PubMed
    29.Huang N, Chen Y, Luo J, Yi J, Lu R, Xiao J, Xue Z, Liu X (1994) In vitro investigation of blood compatibility of Ti with oxide layers of rutile structure. J Biomater Appl 8:404–412CrossRef PubMed
    30.He J, Zhou W, Zhou X, Zhong X, Zhang X, Wan P, Zhu B, Chen W (2008) The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J Mater Sci Mater Med 19:3465–3472. doi:10.​1007/​s10856-008-3505-3 CrossRef PubMed
    31.Yu W-q, X-q J, F-q Z, Xu L (2010) The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A 94:1012–1022. doi:10.​1002/​jbm.​a.​32687 PubMed
    32.Granholm S, Henning P, Lindholm C, Lerner UH (2013) Osteoclast progenitor cells present in significant amounts in mouse calvarial osteoblast isolations and osteoclastogenesis increased by BMP-2. Bone 52:83–92. doi:10.​1016/​j.​bone.​2012.​09.​019 CrossRef PubMed
    33.Mendonça DBS, Miguez PA, Mendonça G, Yamauchi M, Aragão FJL, Cooper LF (2011) Titanium surface topography affects collagen biosynthesis of adherent cells. Bone 49:463–472. doi:10.​1016/​j.​bone.​2011.​04.​019 CrossRef PubMed
    34.Long F (2012) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38. doi:10.​1038/​nrm3254 CrossRef
    35.Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF (2007) The effect of hydrofluoric acid treatment of TiO2 grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo. Biomaterials 28:5418–25. doi:10.​1016/​j.​biomaterials.​2007.​08.​032 CrossRef PubMed
    36.Stein GS, Lian JB, Van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM (2004) Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23:4315–29. doi:10.​1038/​sj.​onc.​1207676 CrossRef PubMed
    37.Sodek KL, Tupy JH, Sodek J, Grynpas MD (2000) Relationships between bone protein and mineral in developing porcine long bone and calvaria. Bone 26:189–98CrossRef PubMed
    38.Bueno Rde B, Adachi P, Castro-Raucci LM, Rosa AL, Nanci A, Oliveira PT (2011) Oxidative nanopatterning of titanium surfaces promotes production and extracellular accumulation of osteopontin. Braz Dent J 22:179–84PubMed
    39.Kim MJ, Kim CW, Lim YJ, Heo SJ (2006) Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A 79:1023–32. doi:10.​1002/​jbm.​a.​31040 CrossRef PubMed
    40.Neve A, Corrado A, Cantatore FP (2012) Osteocalcin: Skeletal and extra-skeletal effects. J Cell Physiol 228:1149–53. doi:10.​1002/​jcp.​24278 CrossRef
    41.Delmas PD, Christiansen C, Mann KG, Price PA (1990) Bone Gla protein (osteocalcin) assay standardization report. J Bone Miner Res 5:5–11. doi:10.​1002/​jbmr.​5650050104 CrossRef PubMed
  • 作者单位:Eduardo Mariscal-Muñoz (1)
    Carlos A. S. Costa (1)
    Hewerson S. Tavares (1)
    Jonas Bianchi (1)
    Josimeri Hebling (2)
    João P.B. Machado (3)
    Ulf H. Lerner (4) (5)
    Pedro P. C. Souza (1)

    1. Department of Physiology and Pathology, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil
    2. Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry at Araraquara, Univ. Estadual Paulista-UNESP, Araraquara, São Paulo, 14801-903, Brazil
    3. National Institute for Space Research–INPE, São José dos Campos, São Paulo, 12227-010, Brazil
    4. Umeå University, Umeå, S-901 87, Sweden
    5. Sahlgrenska Academy at University of Gothenburg, Gothenburg, S-405 30, Sweden
  • 刊物类别:Medicine
  • 刊物主题:Dentistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-3771
文摘
Objectives The aim of this study was to analyze the capacity of a new modified laser surface to stimulate calvarial osteoblasts isolated from neonatal mouse bones to differentiate and form mineralized nodules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700