Polarised Localisation of the Voltage-Gated Sodium Channel Nav1.2 in Cerebellar Granule Cells
详细信息    查看全文
  • 作者:José Martínez-Hernández (1)
    Carmen Ballesteros-Merino (1)
    Laura Fernández-Alacid (1)
    Joel C. Nicolau (1)
    Carolina Aguado (1)
    Rafael Luján (1)
  • 关键词:Sodium channel ; Nav1.2 ; Cerebellum ; Electron microscopy ; Development ; Immunohistochemistry
  • 刊名:The Cerebellum
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:12
  • 期:1
  • 页码:16-26
  • 全文大小:1136KB
  • 参考文献:1. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26(1):13-5. CrossRef
    2. Isom LL. Sodium channel beta subunits: anything but auxiliary. Neuroscientist. 2001;7(1):42-4. CrossRef
    3. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure–function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57(4):411. CrossRef
    4. Goldin AL. Mechanisms of sodium channel inactivation. Curr Opin Neurobiol. 2003;13(3):284-0. CrossRef
    5. Wallace RH, Wang DW, Singh R, Scheffer IE, George Jr AL, Phillips HA, et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet. 1998;19(4):366-0. CrossRef
    6. Wallace RH, Scheffer IE, Barnett S, Richards M, Dibbens L, Desai RR, et al. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet. 2001;68(4):859-5. CrossRef
    7. Beckh S, Noda M, Lübbert H, Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 1989;8(12):3611.
    8. Chioni AM, Fraser SP, Pani F, Foran P, Wilkin GP, Diss JKJ, et al. A novel polyclonal antibody specific for the Nav1. 5 voltage-gated Na channel [] neonatal’splice form. J Neurosci Methods. 2005;147(2):88-8. CrossRef
    9. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, et al. Nomenclature of voltage-gated sodium channels. Neuron. 2000;28(2):365-. CrossRef
    10. Kayano T, Noda M, Flockerzi V, Takahashi H, Numa S. Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 1988;228(1):187-4. CrossRef
    11. Noda M, Ikeda T, Suzuki H, Takeshima H, Takahashi T, Kuno M, et al. Expression of functional sodium channels from cloned cDNA. Nature. 1986;322(6082):826-. CrossRef
    12. Schaller KL, Krzemien DM, Yarowsky PJ, Krueger BK, Caldwell JH. A novel, abundant sodium channel expressed in neurons and glia. J Neurosci. 1995;15(5):3231.
    13. Khaliq ZM, Raman IM. Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J Neurosci. 2006;26(7):1935. CrossRef
    14. Turner R, Meyers D, Barker JL. Localization of tetrodotoxin-sensitive field potentials of CA1 pyramidal cells in the rat hippocampus. J Neurophysiol. 1989;62(6):1375.
    15. Spruston N, Schiller Y, Stuart G, Sakmann B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science. 1995;268(5208):297. CrossRef
    16. Stuart GJ, Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature. 1994;367(6458):69-2. CrossRef
    17. Williams SR, Stuart GJ. Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci. 2000;20(4):1307.
    18. Hanson JE, Smith Y, Jaeger D. Sodium channels and dendritic spike initiation at excitatory synapses in globus pallidus neurons. J Neurosci. 2004;24(2):329. CrossRef
    19. Gasparini S, Migliore M, Magee JC. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J Neurosci. 2004;24(49):11046. CrossRef
    20. Stuart G, Spruston N, Sakmann B, H?usser M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 1997;20(3):125-1. CrossRef
    21. Magee J, Hoffman D, Colbert C, Johnston D. Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu Rev Physiol. 1998;60(1):327-6. CrossRef
    22. Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev. 2008;88(4):1407. CrossRef
    23. Westenbroek RE, Merrick DK, Catterall WA. Differential subcellular localization of the RI and RII Na channel subtypes in central neurons. Neuron. 1989;3(6):695-04. CrossRef
    24. Vega-Saenz de Miera EC, Rudy B, Sugimori M, Llinas R. Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1997;94(13):7059-4. CrossRef
    25. Felts PA, Yokoyama S, Dib-Hajj S, Black JA, Waxman SG. Sodium channel alpha-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Brain Res Mol Brain Res. 1997;45(1):71-2. CrossRef
    26. Schaller KL, Caldwell JH. Developmental and regional expression of sodium channel isoform NaCh6 in the rat central nervous system. J Comp Neurol. 2000;420(1):84-7. CrossRef
    27. Black JA, Yokoyama S, Higashida H, Ransom BR, Waxman SG. Sodium channel mRNAs I, II and III in the CNS: cell-specific expression. Brain Res Mol Brain Res. 1994;22(1-):275-9. CrossRef
    28. Brysch W, Creutzfeldt O, Lüno K, Schlingensiepen R, Schlingensiepen KH. Regional and temporal expression of sodium channel messenger RNAs in the rat brain during development. Exp Brain Res. 1991;86(3):562-. CrossRef
    29. Jarnot M, Corbett AM. Immunolocalization of NaV1. 2 channel subtypes in rat and cat brain and spinal cord with high affinity antibodies. Brain Res. 2006;1107(1):1-2. CrossRef
    30. T?nnes J, Stierli B, Cerletti C, Behrmann J, Molnar E, Streit P. Regional distribution and developmental changes of GluR1-flop protein revealed by monoclonal antibody in rat brain. J Neurochem. 1999;73:2195-05.
    31. Lopez-Bendito G, Shigemoto R, Lujan R, Juiz J. Developmental changes in the localisation of the mGluR1 [alpha] subtype of metabotropic glutamate receptors in Purkinje cells. Neuroscience. 2001;105(2):413-9. CrossRef
    32. Luján R, Nusser Z, Roberts JDB, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci. 1996;8(7):1488-00. CrossRef
    33. Lujan R, Shigemoto R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur J Neurosci. 2006;23(6):1479-0. CrossRef
    34. Gallyas Jr F, Ball SM, Molnar E. Assembly and cell surface expression of KA- subunit–containing kainate receptors. J Neurochem. 2003;86(6):1414-7. CrossRef
    35. Jo J, Ball SM, Seok H, Oh SB, Massey PV, Molnar E, et al. Experience-dependent modification of mechanisms of long-term depression. Nat Neurosci. 2006;9(2):170-. CrossRef
    36. Kopniczky Z, Dobo E, Borbely S, Vilagi I, Detari L, Krisztin-Peva B, et al. Lateral entorhinal cortex lesions rearrange afferents, glutamate receptors, increase seizure latency and suppress seizure-induced c-fos expression in the hippocampus of adult rat. J Neurochem. 2005;95(1):111-4. CrossRef
    37. Gong B, Rhodes KJ, Bekele-Arcuri Z, Trimmer JS. Type I and type II Na channel α–subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain. J Comp Neurol. 1999;412(2):342-2. CrossRef
    38. Schaller KL, Caldwell JH. Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum. 2003;2(1):2-. CrossRef
    39. Lujan R, Shigemoto R, Lopez-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005;130(3):567-0. CrossRef
    40. Sotelo C. Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol. 2004;72(5):295-39. CrossRef
    41. Planells-Cases R, Caprini M, Zhang J, Rockenstein E, Rivera R, Murre C, et al. Neuronal death and perinatal lethality in voltage-gated sodium channel [alpha] II-deficient mice. Biophys J. 2000;78(6):2878-1. CrossRef
    42. Fry M, Boegle AK, Maue RA. Differentiated pattern of sodium channel expression in dissociated Purkinje neurons maintained in long–term culture. J Neurochem. 2007;101(3):737-8. CrossRef
    43. Shah B, Stevens E, Pinnock R, Dixon A, Lee K. Developmental expression of the novel voltage-gated sodium channel auxiliary subunit β3, in rat CNS. J Physiol. 2001;534(3):763. CrossRef
    44. Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ. Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res. 2001;88(1-):37-3. CrossRef
    45. Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242(4886):1654. CrossRef
    46. Baude A, Nusser Z, Roberts JDB, Mulvihill E, Jeffrey Mcllhinney R, Somogyi P. The metabotropic glutamate receptor (mGluRl alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron. 1993;11(4):771-7. CrossRef
    47. Laube G, Roper J, Pitt JC, Sewing S, Kistner U, Garner CC, et al. Ultrastructural localization of Shaker-related potassium channel subunits and synapse-associated protein 90 to septate-like junctions in rat cerebellar Pinceaux. Brain Res Mol Brain Res. 1996;42(1):51-1. CrossRef
    48. Alonso MA, Fan L, Alarcón B. Multiple sorting signals determine apical localization of a nonglycosylated integral membrane protein. J Biol Chem. 1997;272(49):30748. CrossRef
    49. Lee MC, Cahill CM, Vincent JP, Beaudet A. Internalization and trafficking of opioid receptor ligands in rat cortical neurons. Synapse. 2002;43(2):102-1. CrossRef
    50. Kaufmann W, Kasugai Y, Ferraguti F, Storm J. Two distinct pools of large-conductance calcium-activated potassium channels in the somatic plasma membrane of central principal neurons. Neuroscience. 2010;169(3):974-6. CrossRef
    51. Osorio N, Alcaraz G, Padilla F, Couraud F, Delmas P, Crest M. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. J Physiol. 2005;569(3):801. CrossRef
    52. Leterrier C, Brachet A, Fache MP, Dargent B. Voltage-gated sodium channel organization in neurons: protein interactions and trafficking pathways. Neurosci Lett. 2010;486(2):92-00. CrossRef
    53. Fache MP, Moussif A, Fernandes F, Giraud P, Garrido JJ, Dargent B. Endocytotic elimination and domain-selective tethering constitute a potential mechanism of protein segregation at the axonal initial segment. J Cell Biol. 2004;166(4):571. CrossRef
    54. Hill AS, Nishino A, Nakajo K, Zhang G, Fineman JR, Selzer ME, et al. Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates. PLoS Genet. 2008;4(12):e1000317. CrossRef
    55. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR. Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc Natl Acad Sci USA. 2000;97(10):5616-0. CrossRef
    56. Kay AR, Sugimori M, Llinas R. Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J Neurophysiol. 1998;80(3):1167-9.
  • 作者单位:José Martínez-Hernández (1)
    Carmen Ballesteros-Merino (1)
    Laura Fernández-Alacid (1)
    Joel C. Nicolau (1)
    Carolina Aguado (1)
    Rafael Luján (1)

    1. Department of Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006, Albacete, Spain
  • ISSN:1473-4230
文摘
Voltage-gated sodium channels are responsible for action potential initiation and propagation in electrically excitable cells. In this study, we used biochemical, immunohistochemical and quantitative immunoelectron microscopy techniques to reveal the temporal and spatial expression of the Nav1.2 channel subunit in granule cells of cerebellum. Using histoblot, we detected Nav1.2 widely distributed in the adult brain, but prominently expressed in the cerebellum. During postnatal development, Nav1.2 mRNA and protein were detected low during the first and second postnatal week, increased to P15 and then continue to decrease until adult levels. At the light microscopic level, Nav1.2 immunoreactivity concentrated in the molecular layer of the cerebellar cortex. Using immunofluorescence, Nav1.2 colocalised with VGluT1, but not with VGluT2, demonstrating that the subunit was preferentially present in parallel fibre axons and axon terminals. At the electron microscopic level, Nav1.2 immunoparticles were exclusively detected at presynaptic sites in granule cell axons and axon terminals of granule cells, with occasional clustering in their axon initial segment. This was demonstrated using quantitative immunogold analysis. In the axon terminals, the distribution of Nav1.2 was relatively uniform along the extrasynaptic plasma membrane and never detected in the active zone. We could not find detectable levels of Nav1.2 at postsynaptic elements of granule cells or other cerebellar cell types. The present findings show a polarised distribution of Nav1.2 along the neuronal surface of granule cells and suggest its primary involvement in the transmission of information from granule cells to Purkinje cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700