Microalgae as a Source of Lutein: Chemistry, Biosynthesis, and Carotenogenesis
详细信息    查看全文
  • 关键词:Biosynthesis ; Carotenogenesis ; Health effects ; Mass cultivation
  • 刊名:Advances in Biochemical Engineering/Biotechnology
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:153
  • 期:1
  • 页码:37-58
  • 全文大小:410 KB
  • 参考文献:1.Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRef
    2.Zhang J, Sun Z, Sun P, Chen T, Chen F (2014) Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 5:413–425CrossRef
    3.Wang C, Kim JH, Kim SW (2014) Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects. Mar Drugs 12:4810–4832CrossRef
    4.Khachik F, de Moura FF, Zhao DY, Aebischer CP, Bernstein PS (2002) Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Invest Ophthalmol Vis Sci 43:3383–3392
    5.Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727CrossRef
    6.Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318CrossRef
    7.González S, Astner S, An W, Goukassian D, Pathak MA (2003) Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J Invest Dermatol 121:399–405CrossRef
    8.Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405CrossRef
    9.Graziani G, Schiavo S, Nicolai MA, Buono S, Fogliano V et al (2013) Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct 4:144–152CrossRef
    10.Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists. Rockville, MD, pp 1250–1317
    11.Liaaen-Jensen S (2004) Basic carotenoid chemistry. In: Mayne ST, Krinsky NI, Sies H (eds) Carotenoids in health and disease. Marcel Dekker Press, New York, pp 1–30CrossRef
    12.Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB 9:1551–1558
    13.Woodall AA, Lee SW, Weesie RJ, Jackson MJ, Britton G (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Acta Bioch Bioph 1336:33–42CrossRef
    14.Rodrigues E, Mariutti LR, Mercadante AZ (2012) Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar Drugs 10:1784–1798CrossRef
    15.Chopra M, Willson RL, Thurnham DI (1993) Free radical scavenging of lutein in vitro. Ann NY Acad Ssc 691:246–249CrossRef
    16.Chopra M, Thurnham DI (1994) Effect of lutein on oxidation of low-density lipoprotein (LDL) in vitro. P Nutr Soc 53:1993 #18A
    17.Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A et al (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation 103:2922–2927CrossRef
    18.Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC et al (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272:1413–1420CrossRef
    19.Shao HB, Chu LY, Lu ZH, Kang CM (2011) Primary antioxidant free radical scavenging and redox signaling pathway in higher plant cells. Int J Biol Sci 4:8–14
    20.Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ (2000) The ageing lens. Ophthalmologica 214:86–104CrossRef
    21.Ahmed N (2005) Advanced glycation endproducts: role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21CrossRef
    22.Sun Z, Peng XF, Liu J, Fan KW, Wang M, Chen F (2010) Inhibitory effects of microalgal extracts on the formation of advanced glycation endproducts (AGEs). Food Chem 120:261–267CrossRef
    23.Sun Z, Liu J, Zeng X, Huangfu J, Jiang Y, Wang M, Chen F (2011) Protective actions of microalgae against endogenous and exogenous advanced glycation endproducts (AGEs) in human retinal pigment epithelial cells. Food Funct 2:251–258CrossRef
    24.Bian Q, Gao S, Zhou J, Qin J, Taylor A (2012) Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med 53:1298–1307CrossRef
    25.Xu XR, Zou ZY, Xiao X, Huang YM, Wang X (2013) Effects of lutein supplement on serum inflammatory cytokines, ApoE and lipid profiles in early atherosclerosis population. J Atheroscler Thromb 20:170–177CrossRef
    26.Kim JE, Leite JO, DeOgburn R, Smyth JA, Clark RM, Fernandez ML (2011) A lutein-enriched diet prevents cholesterol accumulation and decreases oxidized LDL and inflammatory cytokines in the aorta of guinea pigs. J Nutr 141:1458–1463CrossRef
    27.Sasaki M, Ozawa Y, Kurihara T, Noda K, Imamura Y (2009) Neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Invest Ophthalmol Vis Sci 50:1433–1439CrossRef
    28.Li SY, Fung FK, Fu ZJ, Wong D, Chan HH, Lo AC (2012) Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies. Invest Ophthalmol Vis Sci 53:5976–5984CrossRef
    29.González S, Astner S, An W, Goukassian D, Pathak MA (2003) Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J Invest Dermatol 121:399–405CrossRef
    30.Lee EH, Faulhaber D, Hanson KM, Ding W, Peters S, Kodali S et al (2004) Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression. J Invest Dermatol 122:510–517CrossRef
    31.Jin XH, Ohgami K, Shiratori K, Suzuki Y, Hirano T, Koyama Y et al (2006) Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci 47:2562–2568CrossRef
    32.Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174CrossRef
    33.Tsao R, Yang R, Young JC, Zhu H, Manolis T (2004) Separation of geometric isomers of native lutein diesters in marigold (Tagetes erecta L.) by high-performance liquid chromatography mass spectrometry. J Chromatogr A 1045:65–70CrossRef
    34.Theriault RJ (1965) Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl Microbiol 13:402–416
    35.Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515CrossRef
    36.García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2004) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90CrossRef
    37.León R, Vila M, Hernánz D, Vílchez C (2005) Production of phytoene by herbicide-Treated microalgae Dunaliella bardawil in two-phase systems. Biotechnol Bioeng 92:695–701CrossRef
    38.Borowitzka M, Borowitzka L (1988) Dunaliella. In: Borowitzka M, Borowitzka L (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 27–58
    39.Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J Appl Phycol 7:65–68CrossRef
    40.Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation-developments of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218CrossRef
    41.Akimoto M, Yamada H, Ohtaguchi K, Koide K (1997) Photoautotrophic cultivation of the green alga Chlamydomonas reinhardtii as a method for carbon dioxide fixation and α-linolenic acid production. J Am Oil Chem Soc 74:181–183CrossRef
    42.Orosa M, Torres E, Fidalgo P, Abald J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556CrossRef
    43.Kaplan D, Richmond AE, Dubinsky Z, Aaronson S (1986) Algal nutrition. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 147–199
    44.Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426CrossRef
    45.Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826CrossRef
    46.de Swaaf ME, Pronk JT, Sijtsma L (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672CrossRef
    47.Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738CrossRef
    48.Ip PF, Chen F (2005) Peroxynitrite and nitryl chloride enhance astaxanthin production by the green microalga Chlorella zofingiensis in heterotrophic culture. Proc Biochem 40:3595–3599CrossRef
    49.Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496CrossRef
    50.Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509CrossRef
    51.Wu ZY, Shi XM (2006) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18CrossRef
    52.Park JC, Choi SP, Hong ME, Sim SJ (2014) Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two stage perfusion culture with stepwise light irradiation. Bioprocess Biosyst Eng 37:2039–2047CrossRef
    53.Zhang W, Wang J, Wang J, Liu T (2014) Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol 158:329–335CrossRef
    54.Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46CrossRef
    55.Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102CrossRef
    56.Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36CrossRef
    57.Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long-chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129CrossRef
    58.Sandmann G (2002) Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plant 116:431–440CrossRef
    59.Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574CrossRef
    60.Fraser PD, Schuch W, Bramley PM (2000) Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts-partial purification and biochemical properties. Planta 211:361–369CrossRef
    61.Dogbo O, Camara B (1987) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochemica Biophysica Acta 920:140–148CrossRef
    62.Ladygin VG (2000) Biosynthesis of carotenoids in the chloroplasts of algae and higher plants. Russ J Plant Physl 47:796–814CrossRef
    63.Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development. Plant Physiol 105:405–413
    64.Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412CrossRef
    65.Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2001) Analysis of carotenoids biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293CrossRef
    66.Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12CrossRef
    67.Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265CrossRef
    68.Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the B and E lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626
    69.Jin E, Polle JEW, Lee HK, Hyun SM, Chang M (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol 13:165–174
    70.Adersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: genomis perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177CrossRef
    71.Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395CrossRef
    72.Pesaresi P, Schneider A, Kleine T, Leiseter D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606CrossRef
    73.Johanningmeier U, Howell SH (1984) Regulation of lightharvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardtii: possible involvement of chlorophyll synthesis precursors. J Biol Chem 259:13541–13549
    74.Oster U, Brunner H, Rudiger W (1996) The greening process in cress seedlings. V. Possible interference of chlorophyll precursors, accumulated after thujaplicin treatment, with light-regulated expression of Lhc genes. J Photochem Photobiol 36:255–261CrossRef
    75.Zavgorodnyaya A, Papenbrock J, Grimm B (1997) Yeast-aminolevulinate synthase provides additional chlorophyll precursor n transgenic tobacco. Plant J 12:169–178CrossRef
    76.Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327:321–333CrossRef
    77.Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci 98:2053–2058CrossRef
    78.Karger GA, Reid JD, Hunter CN (2001) Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40:9291–9299CrossRef
    79.Moller SG, Kunkel T, Chua NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15:90–103CrossRef
    80.Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell S327–S338
    81.Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. PNAS 92:10237–10241CrossRef
    82.Pfannschmidt T, Schütze K, Brost M, Oelmüller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130CrossRef
    83.Pursiheimo S, Mulo P, Rintamäki E, Aro EM (2001) Coregulation of light-harvesting complex II phosphorylation and Lhcb accumulation in winter rye. Plant J 26:317–327CrossRef
    84.Bonardi V, Pessaresi P, Becker T, Schieiff E, Wagner R, Pfannschmidt T et al (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182CrossRef
    85.Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194CrossRef
    86.Gray GR, Maxwell DP, Villarimo AR, McIntosh L (2004) Mitochondria/nuclear signaling of alternative oxidase expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep 23:497–503CrossRef
    87.Matsuo M, Obokata J (2006) Remote control of photosynthetic genes by the mitochondrial respiratory chain. Plant J 47:873–882CrossRef
    88.Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B 48:68–74CrossRef
    89.Salguero A, León R, Mariotti A, Morena B, Vega JM, Vílchez C (2005) UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl Mricrobiol Biotechnol 66:506–511CrossRef
    90.Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microb 59:867–873
    91.Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36CrossRef
    92.Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190:363–368CrossRef
    93.Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356CrossRef
    94.Ramos A, Coesel S, Marques A, Rodrigues M, Baumqartner A, Noronha J et al (2008) Isolation and characterization of a stress-inducible Dunaliella salina Lcy-β gene encoding a functional lycopene β-cyclase. Appl Microbiol Biotechnol 79:819–828CrossRef
    95.Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Sign 8:152–162CrossRef
    96.Lei GP, Qiao DR, Bai LH, Xu H, Cao Y (2008) Isolation and characterization of a mitogen activated protein kinase gene in the halotolerant alga Dunaliella salina. J Appl Phycol 20:13–18CrossRef
    97.Eom H, Lee CG, Jin E (2006) Gene expression profiling analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231–1242CrossRef
    98.Nedelcu AM (2006) Evidence for p53-like-mediated stress responses in green algae. FEBS Lett 580:3013–3017CrossRef
  • 作者单位:Zheng Sun (16)
    Tao Li (17)
    Zhi-gang Zhou (16)
    Yue Jiang (18)

    16. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
    17. College of Basic Science, Tianjin Agricultural University, Tianjin, 300384, China
    18. Runke Bioengineering Co. Ltd., Zhangzhou, Fujian, China
  • 丛书名:Microalgae Biotechnology
  • ISBN:978-3-319-23808-1
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1616-8542
文摘
Microalgae represent a sustainable source of natural products, and over 15,000 novel compounds originated from algal biomass have been identified. This chapter focuses on algae-derived lutein, a group of high-value products. Lutein belongs to carotenoids which have extensive applications in feed, food, nutraceutical, and pharmaceutical industries. The production of carotenoids has been one of the most successful activities in microalgal biotechnology. This chapter gives a mini review of microalgae-based lutein, where emphasis is placed on the biosynthetic pathway and the regulation of carotenogenesis. Graphical Abstract

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700