Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid
详细信息    查看全文
  • 作者:Gemma Farré ; Laura Perez-Fons ; Mathilde Decourcelle…
  • 刊名:Transgenic Research
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:25
  • 期:4
  • 页码:477-489
  • 全文大小:1,055 KB
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Molecular Medicine
    Plant Genetics and Genomics
    Animal Genetics and Genomics
    Plant Sciences
    Human Genetics
  • 出版者:Springer Netherlands
  • ISSN:1573-9368
  • 卷排序:25
文摘
Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid.KeywordsAstaxanthinGenetically engineered carotenoid biosynthesisGM maizeMetabolomicsTranscriptomics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700