Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon
详细信息    查看全文
文摘
Wear in self-mated tetrahedral amorphous carbon (ta-C) films is studied by molecular dynamics and near-edge X-ray absorption fine structure spectroscopy. Both theory and experiment demonstrate the formation of a soft amorphous carbon (a-C) layer with increased sp2 content, which grows faster than an a-C tribolayer found on self-mated diamond sliding under similar conditions. The faster $\hbox{sp}^{3} \rightarrow\,\hbox{ sp}^{2}$ transition in ta-C is explained by easy breaking of prestressed bonds in a finite, nanoscale ta-C region, whereas diamond amorphization occurs at an atomically sharp interface. A detailed analysis of the underlying rehybridization mechanism reveals that the $\hbox{sp}^{3}\, \rightarrow\hbox{ sp}^{2}$ transition is triggered by plasticity in the adjacent a-C. Rehybridization therefore occurs in a region that has not yet experienced plastic yield. The resulting soft a-C tribolayer is interpreted as a precursor to the experimentally observed wear.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700