Correlation Between Probe Shape and Atomic Friction Peaks at Graphite Step Edges
详细信息    查看全文
  • 作者:Yalin Dong (1)
    Xin Z. Liu (2)
    Philip Egberts (2)
    Zhijiang Ye (3)
    Robert W. Carpick (2)
    Ashlie Martini (3)
  • 关键词:Molecular dynamics (MD) simulation ; Atomic force microscopy (AFM) ; Atomic friction
  • 刊名:Tribology Letters
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:50
  • 期:1
  • 页码:49-57
  • 全文大小:718KB
  • 参考文献:1. M眉ller, T., Lohrmann, M., K盲sser, T., Marti, O., Mlynek, J., Krausch, G.: Frictional force between a sharp asperity and a surface Step. Phys. Rev. Lett. 79(25), 5066 (1997) CrossRef
    2. Hausen, F., Nielinger, M., Ernst, S., Baltruschat, H.: Nanotribology at single crystal electrodes: influence of ionic adsorbates on friction forces studied with AFM. Electrochimica Acta 53(21), 6058 (2008) CrossRef
    3. H枚lscher, H., Ebeling, D., Schwarz, U.: Friction at atomic-scale surface steps: experiment and theory. Phys. Rev. Lett. 101(24), 246105 (2008) CrossRef
    4. Steiner, P., Gnecco, E., Krok, F., Budzioch, J., Walczak, L., Konior, J., Szymonski, M., Meyer, E.: Atomic-scale friction on stepped surfaces of ionic crystals. Phys. Rev. Lett. 106(18), 186104 (2011) CrossRef
    5. Mate, C., McClelland, G., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942 (1987) CrossRef
    6. Dienwiebel, M., Verhoeven, G., Pradeep, N., Frenken, J., Heimberg, J., Zandbergen, H.: Superlubricity of graphite. Phys. Rev. Lett. 92(12), 126101 (2004) CrossRef
    7. Lee, C., Li, Q., Kalb, W., Liu, X., Berger, H., Carpick, R., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328(5974), 76 (2010) CrossRef
    8. Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu(100). Phys. Rev. B. 77(3), 035430 (2008) CrossRef
    9. Green, C., Lioe, H., Cleveland, J., Proksch, R., Mulvaney, P., Sader, J.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988 (2004) CrossRef
    10. Young, W.: Roark鈥檚 Formulas for Stress and Strain. 6 edn. McGraw-Hill, New York (1989)
    11. Horcas, I., Fernandez, R., Gomez-Rodriguez, J., Colchero, J., G贸mez-Herrero, J., Baro, A.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78(1), 013705 (2007) CrossRef
    12. Niimi, Y., Matsui, T., Kambara, H., Tagami, K., Tsukada, M., Fukuyama, H.: Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B. 73(8), 085421 (2006) CrossRef
    13. Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B. 17(3), 1302 (1978) CrossRef
    14. Stuart, S., Tutein, A., Harrison, J.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000) CrossRef
    15. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1 (1995) CrossRef
    16. Liu, J., Notbohm, J., Carpick, R., Turner, K.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4(7), 3763 (2010) CrossRef
    17. Liu, J., Grierson, D.S., Moldovan, N., Notbohm, J., Li, S., Jaroenapibal, P., O鈥機onnor, S.D., Sumant, A.V., Neelakantan, N., Carlisle, J.A., Turner, K.T., Carpick, R.W.: Preventing nanoscale wear of atomic force microscopy tips through the use of monolithic ultrananocrystalline diamond probes. Small 6(10), 1140 (2010) CrossRef
    18. Johnson, K., Woodhouse, J.: Stick-slip motion in the atomic force microscope. Tribol. Lett. 5(2), 155 (1998) CrossRef
    19. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301 (2004) CrossRef
    20. Medyanik, S., Liu, W., Sung, I., Carpick, R.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97(13), 136106 (2006) CrossRef
    21. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical models for atomic friction. Tribol. Lett. 44(3), 367 (2011) CrossRef
    22. Hunter, L., Siegel, S.: The variation with temperature of the principal elastic moduli of NaCl near the melting point. Phys. Rev. 61, 84 (1942) CrossRef
    23. Grimsditch, M.: Shear elastic modulus of graphite. J. Phys. C. 16(5), 143 (1983) CrossRef
    24. Ebbesen, T.W., Hiura, H.: Graphene in 3-dimensions: towards graphite origami. Adv. Mater. 7(6), 582 (1995) CrossRef
    25. Khurshudov, A., Kato, K.: Wear of the atomic force microscope tip under light load, studied by atomic force microscopy. Ultramicroscopy 60(1), 11 (1995) CrossRef
    26. Agrawal, R., Moldovan, N., Espinosa, H.: An energy-based model to predict wear in nanocrystalline diamond atomic force microscopy tips. J Appl. Phys. 106, 064311 (2009) CrossRef
    27. Jacobs, T., Gotsmann, B., Lantz, M., Carpick, R.: On the application of transition state theory to atomic-scale wear. Tribol. Lett. 39(3), 257 (2010) CrossRef
    28. Killgore, J.P., Geiss, R.H., Hurley, D.C.: Continuous measurement of atomic force microscope tip wear by contact resonance force microscopy. Small 7(8), 1018 (2011) CrossRef
    29. Kim, K.-H., Moldovan, N., Ke, C., Espinosa, H.D., Xiao, X., Carlisle, J.A., Auciello, O.: Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques. Small 1(8-9), 866 (2005) CrossRef
    30. Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E.: Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B 78(4), 045432 (2008) CrossRef
    31. Dongmo, S., Troyon, M., Vautrot, P., Delain, E., Bonnet, N.: Blind restoration method of scanning tunneling and atomic force microscopy images. J. Vac. Sci. Tech. B 14(2), 1552 (1996) CrossRef
    32. Dongmo, L., Villarrubia, J., Jones, S., Renegar, T., Postek, M., Song, J.: Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 85(3), 141 (2000) CrossRef
    33. Bykov, V., Gologanov, A., Shevyakov, V.: Test structure for SPM tip shape deconvolution. Appl. Phys. A. 66(5), 499 (1998) CrossRef
    34. Itoh, H., Fujimoto, T., Ichimura, S.: Tip characterizer for atomic force microscopy. Rev. Sci. Instrum. 77(10), 103704 (2006) CrossRef
  • 作者单位:Yalin Dong (1)
    Xin Z. Liu (2)
    Philip Egberts (2)
    Zhijiang Ye (3)
    Robert W. Carpick (2)
    Ashlie Martini (3)

    1. School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
    2. Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
    3. School of Engineering, University of California Merced, Merced, CA, USA
  • ISSN:1573-2711
文摘
Molecular dynamics simulation and atomic force microscopy are used to study the nature of friction between nanoscale tips and graphite step edges. Both techniques show that the width of the lateral force peak as the probe moves up a step is directly correlated with the size and shape of the tip. The origin of that relationship is explored and the similarities and differences between the measurements and simulations are discussed. The observations suggest that the relationship between lateral force peak width and tip geometry can be used as a real-time monitor for tip wear during atomic scale friction measurements.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700