Synthesis of FeNi3 nanoparticles in benzyl alcohol and their electrical and magnetic properties
详细信息    查看全文
  • 作者:Gonzalo Abellán (1)
    Jose A. Carrasco (1)
    Eugenio Coronado (1)
    Helena Prima-García (1)
  • 关键词:Nanoparticles ; FeNi3 ; Alloys ; Magnetic properties ; Conductivity ; Benzyl alcohol ; Awaruite ; Soft ferromagnetism
  • 刊名:Journal of Sol-Gel Science and Technology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:70
  • 期:2
  • 页码:292-299
  • 全文大小:
  • 参考文献:1. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222-244. doi:10.1002/anie.200602866 CrossRef
    2. You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42:2880-904. doi:10.1039/C2CS35319A CrossRef
    3. Liu XG, Li B, Geng DY et al (2009) (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 47:470-74. doi:10.1016/j.carbon.2008.10.028 CrossRef
    4. Abellán G, Coronado E, Martí-Gastaldo C et al (2013) Magnetic nanocomposites formed by FeNi3 nanoparticles embedded in graphene. Application as supercapacitors. Part Part Syst Charact 30:853-63. doi:10.1002/ppsc.201300186
    5. Lu X, Wu J, Huo G et al (2012) Protein-passivated FeNi3 particles with low toxicity and high inductive heating efficiency for thermal therapy. Colloids Surf Physicochem Eng Asp 414:168-73. doi:10.1016/j.colsurfa.2012.08.062 CrossRef
    6. Vitta S, Khuntia A, Ravikumar G, Bahadur D (2008) Electrical and magnetic properties of nanocrystalline Fe100???xNix alloys. J Magn Magn Mater 320:182-89. doi:10.1016/j.jmmm.2007.05.021 CrossRef
    7. Zeifert BH, Salmones J, Hernández JA et al (2000) Preparation of iron–nickel catalysts by mechanical alloying. Mater Lett 43:244-48. doi:10.1016/S0167-577X(99)00267-0 CrossRef
    8. Lu X, Liang G, Zhang Y (2007) Synthesis and characterization of magnetic FeNi3 particles obtained by hydrazine reduction in aqueous solution. Mater Sci Eng, B 139:124-27. doi:10.1016/j.mseb.2007.01.055 CrossRef
    9. Liao Q, Tannenbaum R, Wang ZL (2006) Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction. J Phys Chem B 110:14262-4265. doi:10.1021/jp0625154 CrossRef
    10. Ban I, Drofenik M, Makovec D (2006) The synthesis of iron–nickel alloy nanoparticles using a reverse micelle technique. J Magn Magn Mater 307:250-56. doi:10.1016/j.jmmm.2006.04.010 CrossRef
    11. Mirhoseini F, Bateni A, Firoozi S (2012) Gas phase synthesis of Ni3Fe nanoparticles by magnesium reduction of metal chlorides. Powder Technol 228:158-62. doi:10.1016/j.powtec.2012.05.011 CrossRef
    12. Jia J, Yu JC, Wang Y-XJ, Chan KM (2010) Magnetic Nanochains of FeNi3 Prepared by a Template-Free Microwave-Hydrothermal Method. ACS Appl Mater Interfaces 2:2579-584. doi:10.1021/am100410r CrossRef
    13. Kelley AT, Serem WK, Daniels SL et al (2013) Vibrational response of FeNi3 nanoparticles to the flux of a modulated electromagnetic field detected by contact-mode atomic force microscopy. J Phys Chem C 117:18768-8776. doi:10.1021/jp406919n CrossRef
    14. Lu X, Liu Q, Huo G et al (2012) CTAB-mediated synthesis of iron–nickel alloy nanochains and their magnetic properties. Colloids Surf Physicochem Eng Asp 407:23-8. doi:10.1016/j.colsurfa.2012.04.048 CrossRef
    15. Hongxia G, Hua C, Fan L et al (2012) Shape-controlled synthesis of FeNi3 nanoparticles by ambient chemical reduction and their magnetic properties. J Mater Res 27:1522-530. doi:10.1557/jmr.2012.67 CrossRef
    16. Chen H, Xu C, Zhao G, Liu Y (2013) Template-free formation of urchin-like FeNi3 microstructures by hydrothermal reduction. Mater Lett 91:75-7. doi:10.1016/j.matlet.2012.09.040 CrossRef
    17. Liu L, Guan J, Shi W et al (2010) Facile synthesis and growth mechanism of flowerlike Ni???Fe alloy nanostructures. J Phys Chem C 114:13565-3570. doi:10.1021/jp104212v CrossRef
    18. Zhou X-M, Wei X-W (2009) Single crystalline FeNi3 dendrites: large scale synthesis, formation mechanism, and magnetic properties. Cryst Growth Des 9:7-2. doi:10.1021/cg8000976 CrossRef
    19. Yan SJ, Zhen L, Xu CY et al (2010) Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@FeNi3 core–shell structures. J Phys Appl Phys 43:245003. doi:10.1088/0022-3727/43/24/245003 CrossRef
    20. Liu W, Zhong W, Jiang HY et al (2005) Synthesis and magnetic properties of FeNi3/Al2O3 core-shell nanocomposites. Eur Phys J B-Condens Matter Complex Syst 46:471-74. doi:10.1140/epjb/e2005-00276-2 CrossRef
    21. Lu X, Liang G, Zhang Y, Zhang W (2007) Synthesis of FeNi3/(Ni0.5Zn0.5)Fe2O4 nanocomposite and its high frequency complex permeability. Nanotechnology 18:015701. doi:10.1088/0957-4484/18/1/015701 CrossRef
    22. Xu MH, Zhong W, Qi XS et al (2010) Highly stable Fe–Ni alloy nanoparticles encapsulated in carbon nanotubes: synthesis, structure and magnetic properties. J Alloys Compd 495:200-04. doi:10.1016/j.jallcom.2010.01.121 CrossRef
    23. Sun Y, Liu X, Feng C et al (2014) A facile synthesis of FeNi3@C nanowires for electromagnetic wave absorber. J Alloys Compd 586:688-92. doi:10.1016/j.jallcom.2013.10.063 CrossRef
    24. Liu XG, Ou ZQ, Geng DY et al (2010) Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles. Carbon 48:891-97. doi:10.1016/j.carbon.2009.11.011 CrossRef
    25. Abellán G, Coronado E, Martí-Gastaldo C et al (2012) Layered double hydroxide (LDH)–organic hybrids as precursors for low-temperature chemical synthesis of carbon nanoforms. Chem Sci 3:1481-485. doi:10.1039/C2SC01064J CrossRef
    26. Abellán G, Martínez JG, Otero TF, et al (2014) A chemical and electrochemical multivalent memory made from FeNi3-graphene nanocomposites. Electrochem Commun 39:15-8. doi:10.1016/j.elecom.2013.11.026
    27. Chen Y, Luo X, Yue G-H et al (2009) Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route. Mater Chem Phys 113:412-16. doi:10.1016/j.matchemphys.2008.07.118 CrossRef
    28. Li PY, Syed JA, Meng XK (2012) Sol–gel preparation and characterization of NiCo and Ni3Fe nanoalloys. J Alloys Compd 512:47-1. doi:10.1016/j.jallcom.2011.09.007 CrossRef
    29. Kr?nzlin N, Niederberger M (2013) Wet-chemical preparation of copper foam monoliths with tunable densities and complex macroscopic shapes. Adv Mater 25:5599-604. doi:10.1002/adma.201301749 CrossRef
    30. Niederberger M, Bartl MH, Stucky GD (2002) Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. J Am Chem Soc 124:13642-3643. doi:10.1021/ja027115i CrossRef
    31. Niederberger M, Garnweitner G, Buha J et al (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol–Gel Sci Technol 40:259-66. doi:10.1007/s10971-006-6668-8 CrossRef
    32. Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793-00. doi:10.1021/ar600035e CrossRef
    33. Xu Z, Jin C, Xia A et al (2013) Structural and magnetic properties of nanocrystalline nickel-rich Fe–Ni alloy powders prepared via hydrazine reduction. J Magn Magn Mater 336:14-9. doi:10.1016/j.jmmm.2013.02.007 CrossRef
    34. Kodama D, Shinoda K, Kasuya R et al (2010) Synthesis of submicron sized Fe20Ni80 particles and their magnetic properties. J Appl Phys 107:09A320. doi:10.1063/1.3334170 CrossRef
    35. Guardia P, Batlle-Brugal B, Roca AG et al (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316:e756–e759. doi:10.1016/j.jmmm.2007.03.085 CrossRef
    36. Salafranca J, Gazquez J, Pérez N et al (2012) Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 12:2499-503. doi:10.1021/nl300665z CrossRef
    37. Chen Z, Meng-Burany X, Okumura H, Hadjipanayis GC (2000) Magnetic properties and microstructure of mechanically milled Sm2(Co, M)17-based powders with M?=?Zr, Hf, Nb, V, Ti, Cr, Cu and Fe. J Appl Phys 87:3409-414. doi:10.1063/1.372359 CrossRef
    38. Serventi AM, El Khakani MA, Saint-Jacques RG, Rickerby DG (2001) Highly textured nanostructure of pulsed laser deposited IrO2 thin films as investigated by transmission electron microscopy. J Mater Res 16:2336-342. doi:10.1557/JMR.2001.0320 CrossRef
  • 作者单位:Gonzalo Abellán (1)
    Jose A. Carrasco (1)
    Eugenio Coronado (1)
    Helena Prima-García (1)

    1. Instituto de Ciencia Molecular, Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
  • ISSN:1573-4846
文摘
Pure and highly crystalline FeNi3 alloy nanoparticles (NPs) were synthesized via sol–gel route with benzyl alcohol, using hydrazine as a reduction reagent without the usage of additional surfactant molecules nor further annealing processes. The structural studies revealed that the particle size is of ca. 200?nm, whose structure consisted on aggregation of small crystallites of about 13?nm. The magnetic properties of the as-synthesized NPs were similar to the bulk with a saturation magnetization of 95?emu?g?. Moreover, the coercive field was ca. 50?G, exhibiting a M r /M s ratio of 0.03, indicative of soft ferromagnetism. The electrical transport in the temperature range 2-00?K exhibits a typical ferromagnetic metallic behaviour. Finally, similar FeNi3 NPs were synthesized in EtOH/H2O mixtures in the presence of sodium dodecyl sulphate molecules as surfactant for comparative purposes, exhibiting a typical half hard magnetic behaviour, highlighting the interest of the reported benzylic route.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700