Tolerance to Ultraviolet Radiation of Psychrotolerant Yeasts and Analysis of Their Carotenoid, Mycosporine, and Ergosterol Content
详细信息    查看全文
  • 作者:Pablo Villarreal ; Mario Carrasco ; Salvador Barahona…
  • 刊名:Current Microbiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:72
  • 期:1
  • 页码:94-101
  • 全文大小:741 KB
  • 参考文献:1.Alcaino J, Baeza M, Cifuentes V (2014) Astaxanthin and related xanthophylls. In: Martín J-F, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 187–208CrossRef
    2.Amaretti A, Simone M, Quartieri A, Masino F, Raimondi S, Leonardi A, Rossi M (2014) Isolation of carotenoid-producing yeasts from an alpine glacier. Chem Eng Trans 38:217–222
    3.Avalos J, Carmen Limon M (2015) Biological roles of fungal carotenoids. Curr Genet 61:309–324PubMed CrossRef
    4.Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656PubMed PubMedCentral CrossRef
    5.Bandaranayake WM (1998) Mycosporines: are they nature’s sunscreens? Nat Prod Rep 15:159–172PubMed CrossRef
    6.Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558PubMed
    7.Cardozo KH, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146:60–78CrossRef
    8.Carrasco M, Rozas JM, Barahona S, Alcaino J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251PubMed PubMedCentral CrossRef
    9.Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446PubMed PubMedCentral CrossRef
    10.Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510PubMed CrossRef
    11.Dupont S, Beney L, Ferreira T, Gervais P (2011) Nature of sterols affects plasma membrane behavior and yeast survival during dehydration. Biochim Biophys Acta 1808:1520–1528PubMed CrossRef
    12.Dupont S, Lemetais G, Ferreira T, Cayot P, Gervais P, Beney L (2012) Ergosterol biosynthesis: a fungal pathway for life on land. Evolution 66:2961–2968PubMed CrossRef
    13.Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791–802PubMed CrossRef
    14.Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197PubMed CrossRef
    15.Higgins VJ, Beckhouse AG, Oliver AD, Rogers PJ, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 69:4777–4787PubMed PubMedCentral CrossRef
    16.Kirti K, Amita S, Priti S, Jyoti S (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol 1–13
    17.Landolfo S, Zara G, Zara S, Budroni M, Ciani M, Mannazzu I (2010) Oleic acid and ergosterol supplementation mitigates oxidative stress in wine strains of Saccharomyces cerevisiae. Int J Food Microbiol 141:229–235PubMed CrossRef
    18.Libkind D, Moline M, Sampaio JP, van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362PubMed CrossRef
    19.Madhour A, Anke H, Mucci A, Davoli P, Weber RW (2005) Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry 66:2617–2626PubMed CrossRef
    20.Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361PubMed CrossRef
    21.Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturwissenschaften 94:77–99PubMed CrossRef
    22.Marova I, Breierova E, Koci R, Friedl Z, Slovak B, Pokorna J (2004) Influence of exogenous stress factors on production of carotenoids by some strains of carotenogenic yeasts. Ann Microbiol 54:73–86
    23.McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 6:218–231PubMed CrossRef
    24.McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 10:182–198PubMed CrossRef
    25.Moline M, Flores MR, Libkind D, Dieguez Mdel C, Farias ME, van Broock M (2010) Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 9:1145–1151PubMed CrossRef
    26.Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10PubMed CrossRef
    27.Pereira VJ, Ricardo J, Galinha R, Benoliel MJ, Barreto Crespo MT (2013) Occurrence and low pressure ultraviolet inactivation of yeasts in real water sources. Photochem Photobiol Sci 12:626–630PubMed CrossRef
    28.Perrier V, Dubreucq E, Galzy P (1995) Fatty acid and carotenoid composition of Rhodotorula strains. Arch Microbiol 164:173–179PubMed CrossRef
    29.Rastogi RP, Singh SP, Incharoensakdi A, Häder D-P, Sinha RP (2014) Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. S Afr J Bot 90:163–169CrossRef
    30.Ravanat J-L, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63:88–102PubMed CrossRef
    31.Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353CrossRef
    32.Shang F, Wen S, Wang X, Tan T (2006) Effect of nitrogen limitation on the ergosterol production by fed-batch culture of Saccharomyces cerevisiae. J Biotechnol 122:285–292PubMed CrossRef
    33.Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50:168–173CrossRef
    34.Vandamme EJ (1992) Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J Chem Technol Biotechnol 53:313–327PubMed CrossRef
    35.Vaz ABM, Rosa LH, Vieira MLA, Garcia VD, Brandao LR, Teixeira LCR, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947PubMed PubMedCentral CrossRef
    36.Venkateswarlu K, Kelly DE, Manning NJ, Kelly SL (1998) NADPH cytochrome P-450 oxidoreductase and susceptibility to ketoconazole. Antimicrob Agents Chemother 42:1756–1761PubMed PubMedCentral
    37.Wiseman H (1993) Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett 326:285–288PubMed CrossRef
    38.Yang SP, Wu ZH, Jian JC (2011) Distribution of marine red yeasts in shrimps and the environments of shrimp culture. Curr Microbiol 62:1638–1642PubMed CrossRef
    39.Zou X (2006) Fed-batch fermentation for hyperproduction of polysaccharide and ergosterol by medicinal mushroom Agaricus brasiliensis. Process Biochem 41:970–974CrossRef
  • 作者单位:Pablo Villarreal (1)
    Mario Carrasco (1)
    Salvador Barahona (1)
    Jennifer Alcaíno (1)
    Víctor Cifuentes (1)
    Marcelo Baeza (1)

    1. Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1432-0991
文摘
Yeasts colonizing the Antarctic region are exposed to a high ultraviolet radiation evolving mechanisms to minimize the UV radiation damages, such as the production of UV-absorbing or antioxidant compounds like carotenoid pigments and mycosporines. Ergosterol has also been suggested to play a role in this response. These compounds are also economically attractive for several industries such as pharmaceutical and food, leading to a continuous search for biological sources of them. In this work, the UV-C radiation tolerance of yeast species isolated from the sub-Antarctic region and their production of carotenoids, mycosporines, and ergosterol were evaluated. Dioszegia sp., Leuconeurospora sp. (T27Cd2), Rhodotorula laryngis, Rhodotorula mucilaginosa, and Cryptococcus gastricus showed the highest UV-C radiation tolerance. The yeasts with the highest content of carotenoids were Dioszegia sp. (OHK torulene), Rh. laryngis (torulene and lycopene), Rh. mucilaginosa, (torulene, gamma carotene, and lycopene), and Cr. gastricus (2-gamma carotene). Probable mycosporine molecules and biosynthesis intermediates were found in Rh. laryngis, Dioszegia sp., Mrakia sp., Le. creatinivora, and Leuconeurospora sp. (T27Cd2). Ergosterol was the only sterol detected in all yeasts, and M. robertii and Le. creatinivora showed amounts higher than 4 mg g−1. Although there was not a well-defined relation between UV-C tolerance and the production of these three kinds of compounds, the majority of the yeasts with lower amounts of carotenoids showed lower UV-C tolerance. Dioszegia sp., M. robertii, and Le. creatinivora were the greatest producers of carotenoids, ergosterol, and mycosporines, respectively, representing good candidates for future studies intended to increase their production for large-scale applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700