Adaptive response to increased bile acids: induction of MDR1 gene expression and P-glycoprotein activity in renal epithelial cells
详细信息    查看全文
  • 作者:Carsten Kneuer (1)
    Walther Honscha (1)
    Gotthold G?bel (2)
    Kerstin U. Honscha (2)
  • 关键词:Bile acids ; Chenodeoxycholic acid ; Deoxycholic acid ; Kidney ; MDCK ; MDR1 ; P ; glycoprotein ; Transport
  • 刊名:Pfl眉gers Archiv - European Journal of Physiology
  • 出版年:2007
  • 出版时间:July 2007
  • 年:2007
  • 卷:454
  • 期:4
  • 页码:587-594
  • 全文大小:290KB
  • 参考文献:1. Sai Y (2005) Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab Pharmacokinet 20:91-9 CrossRef
    2. Kasanicki MA, Pilch PF (1990) Regulation of glucose-transporter function. Diabetes Care 13:219-27 CrossRef
    3. Chesney RW, Zelikovic I, Jones DP, Budreau A, Jolly K (1990) The renal transport of taurine and the regulation of renal sodium-chloride-dependent transporter activity. Pediatr Nephrol 4:399-07 CrossRef
    4. Zollner G, Fickert P, Silbert D, Fuchsbichler A, Marschall HU, Zatloukal K, Denk H, Trauner M (2003) Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38:717-27 CrossRef
    5. Kojima H, Nies AT, K?nig J, Hagmann W, Spring H, Uemura M, Fukui H, Keppler D (2003) Changes in the expression and localization of hepatocellular transporters and radixin in primary biliary cirrhosis. J Hepatol 39:693-02 CrossRef
    6. Ros JE, Libbrecht L, Geuken M, Jansen PL, Roskams TA (2003) High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol 200:553-60 CrossRef
    7. Lee JM, Trauner M, Soroka CJ, Stieger B, Meier PJ, Boyer JL (2000) Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Gastroenterology 118:163-72 CrossRef
    8. Soroka CJ, Lee JM, Azzaroli F, Boyer JL (2001) Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 33:783-91 CrossRef
    9. Donner MG, Keppler D (2001) Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology 34:351-59 CrossRef
    10. Lee J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KD, Kramer W, Boyer JL (2001) Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology 121:1473-484 CrossRef
    11. Lopez-Parra M, Telleria N, Titos E, Planaguma A, Gonzalez-Periz A, Arroyo V, Rodes J, Claria J (2006) Gene expression profiling of renal dysfunction in rats with experimental cirrhosis. J Hepatol 45:221-29 CrossRef
    12. Brandoni A, Villar SR, Picena JC, Anzai N, Endou H, Torres AM (2006) Expression of rat renal cortical OAT1 and OAT3 in response to acute biliary obstruction. Hepatology 45:1092-100 CrossRef
    13. Brandoni A, Anzai N, Kanai Y, Endou H, Torres AM (2006) Renal Elimination of p-aminohippurate (PAH) in response to three days of biliary obstruction in the rat. The role of OAT1 and OAT3. Biochim Biophys Acta 1762:673-82
    14. Launay-Vacher V, Izzedine H, Karie S, Hulot JS, Baumelou A, Deray G (2006) Renal tubular drug transporters. Nephron Physiol 103:97-06 CrossRef
    15. Hartmann G, Kim H, Piquette-Miller M (2001) Regulation of the hepatic multidrug resistance gene expression by endotoxin and inflammatory cytokines in mice. Int Immunopharmacol 1:189-99 CrossRef
    16. Hartmann G, Vassileva V, Piquette-Miller M (2005) Impact of endotoxin-induced changes in P-glycoprotein expression on disposition of doxorubicin in mice. Drug Metab Dispos 33:820-28 CrossRef
    17. Zollner G, Fickert P, Fuchsbichler A, Silbert D, Wagner M, Arbeiter S, Gonzalez FJ, Marschall HU, Zatloukal K, Denk H, Trauner M (2003) Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J Hepatol 39:480-88 CrossRef
    18. Sasabe H, Kato Y, Suzuki T, Itose M, Miyamoto G, Sugiyama Y (2004) Differential involvement of multidrug resistance-associated protein 1 and P-glycoprotein in tissue distribution and excretion of grepafloxacin in mice. J Pharmacol Exp Ther 310:648-55 CrossRef
    19. Sai K, Kaniwa N, Itoda M, Saito Y, Hasegawa R, Komamura K, Ueno K, Kamakura S, Kitakaze M, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Kitamura Y, Kamatani N, Ozawa S, Sawada J (2003) Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics 13:741-57 CrossRef
    20. Wakasugi H, Yano I, Ito T, Hashida T, Futami T, Nohara R, Sasayama S, Inui K (1998) Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther 64:123-28 CrossRef
    21. Jamroziak K, Robak T (2004) Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies. Hematology 9:91-05 CrossRef
    22. Siegsmund M, Brinkmann U, Schaffeler E, Weirich G, Schwab M, Eichelbaum M, Fritz P, Burk O, Decker J, Alken P, Rothenpieler U, Kerb R, Hoffmeyer S, Brauch H (2002) Association of the P-glycoprotein transporter MDR1(C3435T) polymorphism with the susceptibility to renal epithelial tumors. J Am Soc Nephrol 13:1847-854 CrossRef
    23. Uhr M, Holsboer F, Muller MB (2002) Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol 14:753-59 CrossRef
    24. Romiti N, Tramonti G, Chieli E (2002) Influence of different chemicals on MDR-1 P-glycoprotein expression and activity in the HK-2 proximal tubular cell line. Toxicol Appl Pharmacol 183:83-1 CrossRef
    25. Takara K, Tsujimoto M, Kokufu M, Ohnishi N, Yokoyama T (2003) Up-regulation of MDR1 function and expression by cisplatin in LLC-PK1 cells. Biol Pharm Bull 26:205-09 CrossRef
    26. Maentausta O, Janne O (1979) Radioimmunoassay of conjugated cholic acid, chenodeoxycholic acid, and deoxycholic acid from human serum, with use of 125I-labeled ligands. Clin Chem 25:264-68
    27. Quattropani C, Vogt B, Odermatt A, Dick B, Frey BM, Frey FJ (2001) Reduced activity of 11 beta-hydroxysteroid dehydrogenase in patients with cholestasis. J Clin Invest 108:1299-305 CrossRef
    28. Batta AK, Arora R, Salen G, Tint S, Eskreis D, Katz S (1989) Characterization of serum and urinary bile acids in patients with primary biliary cirrhosis by gas-liquid chromatography-mass spectrometry: effect of ursodeoxycholic acid treatment. J Lipid Res 30:1953-962
    29. Polkowska G, Polkowski W, Kudlicka A, Wallner G, Chrzastek-Spruch H (2001) Range of serum bile acid concentrations in neonates, infants, older children, and in adults. Med Sci Monit 7:268-70
    30. Washizu T, Ishida T, Washizu M, Tomoda I, Kaneko JJ (1994) Changes in bile acid composition of serum and gallbladder bile in bile duct ligated dogs. J Vet Med Sci 56:299-03
    31. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102:731-44 CrossRef
    32. Chiang JY (2003) Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastrointest Liver Physiol 284:G349-56
    33. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B (1999) Identification of a nuclear receptor for bile acids. Science 284:1362-365 CrossRef
    34. Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3:543-53 CrossRef
    35. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, Liu Y, Klaassen CD, Brown KK, Reinhard J, Willson TM, Koller BH, Kliewer SA (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA 98:3369-374 CrossRef
    36. Goodwin B, Gauthier KC, Umetani M, Watson MA, Lochansky MI, Collins JL, Leitersdorf E, Mangelsdorf DJ, Kliewer SA, Repa JJ (2003) Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc Natl Acad Sci USA 100:223-28 CrossRef
    37. Masuyama H, Suwaki N, Tateishi Y, Nakatsukasa H, Segawa T, Hiramatsu Y (2005) The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion. Mol Endocrinol 19:1170-180 CrossRef
    38. Geick A, Eichelbaum M, Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 276:14581-4587 CrossRef
    39. Zhang H, LeCulyse E, Liu L, Hu M, Matoney L, Zhu W, Yan B (1999) Rat pregnane X receptor: molecular cloning, tissue distribution, and xenobiotic regulation. Arch Biochem Biophys 368:14-2 CrossRef
    40. Huber RM, Murphy K, Miao B, Link JR, Cunningham MR, Rupar MJ, Gunyuzlu PL, Haws TF, Kassam A, Powell F, Hollis GF, Young PR, Mukherjee R, Burn TC (2002) Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters. Gene 290:35-3 CrossRef
    41. Burk O, Arnold KA, Geick A, Tegude H, Eichelbaum M (2005) A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol Chem 386:503-13 CrossRef
    42. Invernizzi P, Setchell KD, Crosignani A, Battezzati PM, Larghi A, O′Connell NC, Podda M (1999) Differences in the metabolism and disposition of ursodeoxycholic acid and of its taurine-conjugated species in patients with primary biliary cirrhosis. Hepatology 29:320-27 CrossRef
    43. Roda E, Liva S, Ferrara F, Azzaroli F, Giovanelli S, Nigro G, Festi D, Mazella G (2002) The UDCA dosage deficit: a fate shared with CDCA. Eur J Gastroenterol Hepatol 14:213-16 CrossRef
  • 作者单位:Carsten Kneuer (1)
    Walther Honscha (1)
    Gotthold G?bel (2)
    Kerstin U. Honscha (2)

    1. Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, An den Tierkliniken 15, 04103, Leipzig, Germany
    2. Institute of Veterinary Physiology, University of Leipzig, Leipzig, Germany
  • ISSN:1432-2013
文摘
Cholestatic liver disease and increased serum bile acid concentrations are known to trigger various adaptive responses including the induction of hepatic, intestinal and renal bile acid transport proteins, but renal P-glycoprotein (Pgp, multidrug resistance protein 1, MDR1) remained uninvestigated in this context. We show that treatment of Madin Darby canine kidney (MDCK) cells with pathophysiologically relevant concentrations of chenodeoxycholic acid (CDCA; 100?μM) for 12?h induces MDR1 transcript levels in vitro more than twofold. CDCA and deoxycholic acid pre-treatment for 24-6?h (100?μM) also increased Pgp activity measured as rhodamine efflux, while cholic acid and taurocholic acid were not effective in concentrations up to 600?μM. CDCA pre-treatment (100?μM, 72?h) also resulted in a doubling of rhodamine123 secretion across an epithelium-like monolayer grown on Transwell filters and decreased the sensitivity towards the kidney toxic drugs cyclosporine A and paclitaxel. These findings predict physiologically as well as pharmacologically relevant consequences of liver disease for Pgp substrate transport and toxicity in the kidneys.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700