Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status
详细信息    查看全文
  • 作者:Susana Cardoso ; Cristina Carvalho
  • 关键词:Brain mitochondria ; Methylglyoxal ; Oxidative stress ; Pyridoxamine
  • 刊名:Journal of Bioenergetics and Biomembranes
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:46
  • 期:5
  • 页码:347-355
  • 全文大小:413 KB
  • 参考文献:1. Addabbo F, Ratliff B, Park HC, Kuo MC, Ungvari Z, Csiszar A et al (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol 174(1):34-3 CrossRef
    2. Alderson NL, Chachich ME, Youssef NN, Beattie RJ, Nachtigal M, Thorpe SR et al (2003) The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats. Kidney Int 63(6):2123-133 CrossRef
    3. Almeida F, Santos-Silva D, Rodrigues T, Matafome P, Crisostomo J, Sena C et al (2013) Pyridoxamine reverts methylglyoxal-induced impairment of survival pathways during heart ischemia. Cardiovasc Ther 31(6):e79–e85 CrossRef
    4. Amicarelli F, Colafarina S, Cattani F, Cimini A, Di Ilio C, Ceru MP et al (2003) Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury. Free Radic Biol Med 35(8):856-71 CrossRef
    5. Barja G (1999) Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 31(4):347-66 CrossRef
    6. Beeri MS, Moshier E, Schmeidler J, Godbold J, Uribarri J, Reddy S et al (2010) Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev 132(11-2):583-87
    7. Beisswenger PJ, Howell SK, Smith K, Szwergold BS (2003) Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. Biochim Biophys Acta 1637(1):98-06 CrossRef
    8. Breuer ME, Willems PH, Russel FG, Koopman WJ, Smeitink JA (2012) Modeling mitochondrial dysfunctions in the brain: from mice to men. J Inherit Metab Dis 35(2):193-10 CrossRef
    9. Cardoso S, Santos RX, Correia SC, Carvalho C, Santos MS, Baldeiras I et al (2013) Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis 49C:1-2 CrossRef
    10. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484-90 CrossRef
    11. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65-34
    12. Chetyrkin SV, Zhang W, Hudson BG, Serianni AS, Voziyan PA (2008) Pyridoxamine protects proteins from functional damage by 3-deoxyglucosone: mechanism of action of pyridoxamine. Biochemistry 47(3):997-006 CrossRef
    13. de Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C, Munch G (2007) Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells-protection by carbonyl scavengers. Neurobiol Aging 28(7):1044-050 CrossRef
    14. Demir R, Acar G, Tanriover G, Seval Y, Kayisli UA, Agar A (2005) Effects of excess vitamin B6 intake on cerebral cortex neurons in rat: an ultrastructural study. Folia Histochem Cytobiol 43(3):143-50
    15. Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J et al (2010) Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 88(3):273-84 CrossRef
    16. Di Loreto S, Caracciolo V, Colafarina S, Sebastiani P, Gasbarri A, Amicarelli F (2004) Methylglyoxal induces oxidative stress-dependent cell injury and up-regulation of interleukin-1beta and nerve growth factor in cultured hippocampal neuronal cells. Brain Res 1006(2):157-67 CrossRef
    17. Di Loreto S, Zimmitti V, Sebastiani P, Cervelli C, Falone S, Amicarelli F (2008) Methylglyoxal causes strong weakening of detoxifying capacity and apoptotic cell death in rat hippocampal neurons. Int J Biochem Cell Biol 40(2):245-57 CrossRef
    18. Edeas M, Attaf D, Mailfert AS, Nasu M, Joubet R (2010) Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants. Pathol Biol Paris 58(3):220-25 CrossRef
    19. Estabrook RE (1967) Mitochondrial respiratory control and the polarographic measurement of ADP/O ratios. Methods Enzymol 10:41-7 CrossRef
    20. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81-28 CrossRef
    21. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114-21 CrossRef
    22. Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93-04 CrossRef
    23. Giardino I, Edelstein D, Brownlee M (1996) BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J Clin Invest 97(6):1422-428 CrossRef
    24. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751-66
    25. Han D, Canali R, Rettori D, Kaplowitz N (2003) Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol Pharmacol 64(5):1136-144 CrossRef
    26. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74(1):214-26 CrossRef
    27. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49(2):105-21 CrossRef
    28. Kang Z, Li H, Li G, Yin D (2006) Reaction of pyridoxamine with malondialdehyde: mechanism of inhibition of formation of advanced lipoxidation end-products. Amino Acids 30(1):55-1 CrossRef
    29. Karbowski M, Neutzner A (2012) Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol 123(2):157-71 CrossRef
    30. Kikuchi S, Shinpo K, Moriwaka F, Makita Z, Miyata T, Tashiro K (1999) Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J Neurosci Res 57(2):280-89 CrossRef
    31. Kim-Han JS, Dugan LL (2005) Mitochondrial uncoupling proteins in the central nervous system. Antioxid Redox Signal 7(9-0):1173-181 CrossRef
    32. Krebs HA, Holzach O (1952) The conversion of citrate into cis-aconitate and isocitrate in the presence of aconitase. Biochem J 52(3):527-28
    33. Malouf R, Grimley EJ (2003) The effect of vitamin B6 on cognition. Cochrane Database Syst Rev (4):CD004393
    34. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23(1):134-47 CrossRef
    35. Metz TO, Alderson NL, Thorpe SR, Baynes JW (2003) Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch Biochem Biophys 419(1):41-9 CrossRef
    36. Molimard R, Marillaud A, Paille A, Le Devehat C, Lemoine A, Dougny M (1980) Impairment of memorization by high doses of pyridoxine in man. Biomedicine 32(2):88-2
    37. Moreira PI, Santos MS, Moreno A, Oliveira C (2001) Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep 21(6):789-00 CrossRef
    38. Moreira PI, Santos MS, Moreno A, Rego AC, Oliveira C (2002) Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res 69(2):257-67 CrossRef
    39. Nagaraj RH, Sarkar P, Mally A, Biemel KM, Lederer MO, Padayatti PS (2002) Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys 402(1):110-19 CrossRef
    40. Nagy ZS, Esiri MM (1997) Apoptosis-related protein expression in the hippocampus in Alzheimer's disease. Neurobiol Aging 18(6):565-71 CrossRef
    41. Okouchi M, Okayama N, Aw TY (2005) Differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of cellular redox. Curr Neurovasc Res 2(1):13-2 CrossRef
    42. Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW (2000) Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem 275(28):21177-1184 CrossRef
    43. Rabbani N, Thornalley PJ (2008) Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem Soc Trans 36(Pt 5):1045-050 CrossRef
    44. Reddy VP, Beyaz A (2006) Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today 11(13-4):646-54 CrossRef
    45. Rodrigues T, Matafome P, Santos-Silva D, Sena C, Seica R (2013) Reduction of methylglyoxal-induced glycation by pyridoxamine improves adipose tissue microvascular lesions. J Diabetes Res:690650
    46. Root EJ, Longenecker JB (1983) Brain cell alterations suggesting premature aging induced by dietary deficiency of vitamin B6 and/or copper. Am J Clin Nutr 37(4):540-52
    47. Rosca MG, Monnier VM, Szweda LI, Weiss MF (2002) Alterations in renal mitochondrial respiration in response to the reactive oxoaldehyde methylglyoxal. Am J Physiol Ren Physiol 283(1):F52–F59
    48. Sena CM, Matafome P, Crisostomo J, Rodrigues L, Fernandes R, Pereira P et al (2012) Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol Res 65(5):497-06 CrossRef
    49. Shinpo K, Kikuchi S, Sasaki H, Ogata A, Moriwaka F, Tashiro K (2000) Selective vulnerability of spinal motor neurons to reactive dicarbonyl compounds, intermediate products of glycation, in vitro: implication of inefficient glutathione system in spinal motor neurons. Brain Res 861(1):151-59 CrossRef
    50. Skamarauskas JT, McKay AG, Hunt JV (1996) Aminoguanidine and its pro-oxidant effects on an experimental model of protein glycation. Free Radic Biol Med 21(6):801-12 CrossRef
    51. Stitt A, Gardiner TA, Alderson NL, Canning P, Frizzell N, Duffy N et al (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51(9):2826-832 CrossRef
    52. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44-4 CrossRef
    53. Vatassery GT, Younoszai R (1978) Alpha tocopherol levels in various regions of the central nervous systems of the rat and guinea pig. Lipids 13(11):828-31 CrossRef
    54. Victor VM, Rocha M, Banuls C, Bellod L, Hernandez-Mijares A (2011) Mitochondrial dysfunction and targeted drugs: a focus on diabetes. Curr Pharm Des 17(20):1986-001 CrossRef
    55. Voziyan PA, Hudson BG (2005) Pyridoxamine as a multifunctional pharmaceutical: targeting pathogenic glycation and oxidative damage. Cell Mol Life Sci 62(15):1671-681 CrossRef
    56. Wang AL, Yu AC, He QH, Zhu X, Tso MO (2007) AGEs mediated expression and secretion of TNF alpha in rat retinal microglia. Exp Eye Res 84(5):905-13 CrossRef
    57. Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr (1987) Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem 33(2 Pt 1):214-20
    58. Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A 94(21):11168-1172 CrossRef
    59. Zheng F, Zeng YJ, Plati AR, Elliot SJ, Berho M, Potier M et al (2006) Combined AGE inhibition and ACEi decreases the progression of established diabetic nephropathy in B6 db/db mice. Kidney Int 70(3):507-14
  • 作者单位:Susana Cardoso (1)
    Cristina Carvalho (1)
    Ricardo Marinho (2)
    Anabel Sim?es (1)
    Cristina M. Sena (3) (4)
    Paulo Matafome (3) (4)
    Maria S. Santos (1) (5)
    Raquel M. Sei?a (3) (4)
    Paula I. Moreira (1) (3)

    1. CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
    2. Faculty of Medicine, University of Coimbra, Coimbra, Portugal
    3. Laboratory of Physiology-Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
    4. IBILI-Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
    5. Department of Life Sciences-Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
  • ISSN:1573-6881
文摘
Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700