Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle
详细信息    查看全文
  • 作者:Miriam Zanuy (1) (2)
    Antonio Ramos-Montoya (1) (2) (7)
    Oscar Villaca?as (3) (8)
    Nuria Canela (4)
    Anibal Miranda (1) (2)
    Esther Aguilar (1) (2)
    Neus Agell (4)
    Oriol Bachs (4)
    Jaime Rubio-Martinez (3)
    Maria Dolors Pujol (5)
    Wai-Nang P. Lee (6)
    Silvia Marin (1) (2)
    Marta Cascante (1) (2)
  • 关键词:Cyclin ; dependent kinases ; CDK ; inhibitor ; Tracer ; based metabolomics ; Pentose phosphate pathway ; Phase ; plane analysis
  • 刊名:Metabolomics
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:8
  • 期:3
  • 页码:454-464
  • 全文大小:381KB
  • 参考文献:1. Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N., Brandes, J. L., Bassilian, S., et al. (1997). Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. / Cancer Research, / 57, 4242-248.
    2. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. / Analytical Biochemistry, / 72, 248-54. CrossRef
    3. Comin-Anduix, B., Boros, L. G., Marin, S., Boren, J., Callol-Massot, C., Centelles, J. J., et al. (2002). Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells. / Journal of Biological Chemistry, / 277, 46408-6414. CrossRef
    4. Edwards, J. S., Ramakrishna, R., & Palsson, B. O. (2002). Characterizing the metabolic phenotype: a phenotype phase plane analysis. / Biotechnology and Bioengineering, / 77, 27-6. CrossRef
    5. Frangioni, J. V., & Neel, B. G. (1993). Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. / Analytical Biochemistry, / 210, 179-87. CrossRef
    6. Fry, D. W., Harvey, P. J., Keller, P. R., Elliott, W. L., Meade, M., Trachet, E., et al. (2004). Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. / Molecular Cancer Therapeutics, / 3, 1427-438.
    7. Graf, F., Koehler, L., Kniess, T., Wuest, F., Mosch, B., & Pietzsch, J. (2009). Cell cycle regulating kinase Cdk4 as a potential target for tumor cell treatment and tumor imaging. / Journal of Oncology, / 2009, 106378. CrossRef
    8. Hall, M., & Peters, G. (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. / Advances in Cancer Research, / 68, 67-08. CrossRef
    9. Harlow, E. & Lane, D. (Eds.). (1988). Antibodies: a laboratory manual (p. 469). New York: Cold Spring Harbor Laboratory Press.
    10. Jonsson, B., Liminga, G., Csoka, K., Fridborg, H., Dhar, S., Nygren, P., et al. (1996). Cytotoxic activity of calcein acetoxymethyl ester (calcein/AM) on primary cultures of human haematological and solid tumours. / European Journal of Cancer, / 32A, 883-87. CrossRef
    11. Kuo, W., Lin, J., & Tang, T. K. (2000). Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. / International Journal of Cancer, / 85, 857-64. CrossRef
    12. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. / Nature, / 227, 680-85. CrossRef
    13. Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P., & Hinds, P. W. (2006). Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. / Cancer Cell, / 9, 13-2. CrossRef
    14. Lee, W. N. P. (2006). Characterizing phenotype with tracer based metabolomics. / Metabolomics, / 2, 31-9. CrossRef
    15. Lee, W. N., Boros, L. G., Puigjaner, J., Bassilian, S., Lim, S., & Cascante, M. (1998). Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-3C2]glucose. / American Journal of Physiology, / 274, E843–E851.
    16. Lee, W. N., Byerley, L. O., Bergner, E. A., & Edmond, J. (1991). Mass isotopomer analysis: theoretical and practical considerations. / Biological Mass Spectrometry, / 20, 451-58. CrossRef
    17. Liminga, G., Jonsson, B., Nygren, P., & Larsson, R. (1999). On the mechanism underlying calcein-induced cytotoxicity. / European Journal of Pharmacology, / 383, 321-29. CrossRef
    18. Liminga, G., Martinsson, P., Jonsson, B., Nygren, P., & Larsson, R. (2000). Apoptosis induced by calcein acetoxymethyl ester in the human histiocytic lymphoma cell line U-937 GTB. / Biochemical Pharmacology, / 60, 1751-759. CrossRef
    19. Liminga, G., Nygren, P., Dhar, S., Nilsson, K., & Larsson, R. (1995). Cytotoxic effect of calcein acetoxymethyl ester on human tumor cell lines: drug delivery by intracellular trapping. / Anticancer Drugs, / 6, 578-85. CrossRef
    20. Lundberg, A. S., & Weinberg, R. A. (1998). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. / Molecular and Cellular Biology, / 18, 753-61.
    21. Mahale, S., Aubry, C., Jenkins, P. R., Marechal, J. D., Sutcliffe, M. J., & Chaudhuri, B. (2006). Inhibition of cancer cell growth by cyclin dependent kinase 4 inhibitors synthesized based on the structure of fascaplysin. / Bioorganic Chemistry, / 34(5), 287-97. CrossRef
    22. Malumbres, M., & Barbacid, M. (2001). To cycle or not to cycle: a critical decision in cancer. / Nature Reviews Cancer, / 1, 222-31. CrossRef
    23. Malumbres, M., & Barbacid, M. (2006). Is cyclin D1-CDK4 kinase a bona fide cancer target? / Cancer Cell, / 9, 2-. CrossRef
    24. Malumbres, M., Sotillo, R., Santamaria, D., Galan, J., Cerezo, A., Ortega, S., et al. (2004). Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. / Cell, / 118, 493-04. CrossRef
    25. Marzec, M., Kasprzycka, M., Lai, R., Gladden, A. B., Wlodarski, P., Tomczak, E., et al. (2006). Mantle cell lymphoma cells express predominantly cyclin D1a isoform and are highly sensitive to selective inhibition of CDK4 kinase activity. / Blood, / 108, 1744-750. CrossRef
    26. Matito, C., Mastorakou, F., Centelles, J. J., Torres, J. L., & Cascante, M. (2003). Antiproliferative effect of antioxidant polyphenols from grape in murine Hepa-1c1c7. / European Journal of Nutrition, / 42, 43-9. CrossRef
    27. McInnes, C. (2008). Progress in the evaluation of CDK inhibitors as anti-tumor agents. / Drug Discovery Today, / 13, 875-81. CrossRef
    28. Menu, E., Garcia, J., Huang, X., Di Liberto, M., Toogood, P. L., Chen, I., et al. (2008). A novel therapeutic combination using PD 0332991 and bortezomib: study in the 5T33MM myeloma model. / Cancer Research, / 68, 5519-523. CrossRef
    29. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. / Journal of Immunological Methods, / 65, 55-3. CrossRef
    30. Myohanen, S. K., Baylin, S. B., & Herman, J. G. (1998). Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. / Cancer Research, / 58, 591-93.
    31. Poulsen, H. S., & Frederiksen, P. (1981). Glucose-6-phosphate dehydrogenase activity in human breast cancer. Lack of association with oestrogen receptor content. / Acta Pathol Microbiol Scand [A], / 89, 263-70.
    32. Ramos-Montoya, A., Lee, W.-N. P., Bassilian, S., Lim, S., Trebukhina, R. V., Kazhyna, M. V., et al. (2006). Pentose phosphate cycle oxidative and non-oxidative balance: a new vulnerable target for overcoming drug resistance in cancer. / International Journal of Cancer, / 119, 2733-741. CrossRef
    33. Rubio-Martinez, J., Pinto, M., Tomas M.S., Perez, J. J. (2005). Dock_Dyn: a program for fast molecular docking using molecular dynamics information. University of Barcelona and Technical University of Catalonia.
    34. Santamaria, D., & Ortega, S. (2006). Cyclins and CDKS in development and cancer: lessons from genetically modified mice. / Frontiers in Bioscience, / 11, 1164-188. CrossRef
    35. Shapiro, G. I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. / Journal of Clinical Oncology, / 24, 1770-783. CrossRef
    36. Sherr, C. J. (1996). Cancer cell cycles. / Science, / 274, 1672-677. CrossRef
    37. Sherr, C. J., & Roberts, J. M. (2004). Living with or without cyclins and cyclin-dependent kinases. / Genes and Development, / 18, 2699-711. CrossRef
    38. Smith, D. B., & Johnson, K. S. (1988). Single-step purification of polypeptides expressed in / Escherichia coli as fusions with glutathione S-transferase. / Gene, / 67, 31-0. CrossRef
    39. Villacanas, O., Perez, J. J., & Rubio-Martinez, J. (2002). Structural analysis of the inhibition of Cdk4 and Cdk6 by p16(INK4a) through molecular dynamics simulations. / Journal of Biomolecular Structure and Dynamics, / 20, 347-58.
    40. Villacanas, O., & Rubio-Martinez, J. (2006). Reducing CDK4/6–p16(INK4a) interface. Computational alanine scanning of a peptide bound to CDK6 protein. / Proteins, / 63, 797-10. CrossRef
    41. Vizan, P., Alcarraz-Vizán, G., Diaz-Moralli, S., Rodriguez-Prados, J. C., Zanuy, M., Centelles, J. J., et al. (2007). Quantification of intracellular phosphorylated carbohydrates in HT29 human colon adenocarcinoma cell line using liquid chromatography-electrospray ionization tandem mass spectrometry. / Analytical Chemistry, / 79(13), 5000-005. CrossRef
    42. Vizan, P., Alcarraz-Vizan, G., Diaz-Moralli, S., Solovjeva, O. N., Frederiks, W. M., & Cascante, M. (2009). Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. / International Journal of Cancer, / 124, 2789-796. CrossRef
    43. Vizán, P., Mazurek, S., & Cascante, M. (2008). Robust metabolic adaptation underlying tumor progression. / Metabolomics, / 4, 1-2. CrossRef
    44. Warburg, O. (1956). Origin of cancer cells. / Oncologia, / 9, 75-3. CrossRef
    45. Yu, Q., Sicinska, E., Geng, Y., Ahnstrom, M., Zagozdzon, A., Kong, Y., et al. (2006). Requirement for CDK4 kinase function in breast cancer. / Cancer Cell, / 9, 23-2. CrossRef
  • 作者单位:Miriam Zanuy (1) (2)
    Antonio Ramos-Montoya (1) (2) (7)
    Oscar Villaca?as (3) (8)
    Nuria Canela (4)
    Anibal Miranda (1) (2)
    Esther Aguilar (1) (2)
    Neus Agell (4)
    Oriol Bachs (4)
    Jaime Rubio-Martinez (3)
    Maria Dolors Pujol (5)
    Wai-Nang P. Lee (6)
    Silvia Marin (1) (2)
    Marta Cascante (1) (2)

    1. Department of Biochemistry and Molecular Biology, Faculty of Biology (Edifici Nou), University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain
    2. Institute of Biomedicine of the Universitat de Barcelona (IBUB) and CSIC Associated Unit, Barcelona, Spain
    7. Uro-Oncology Research Group, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
    3. Department of Physical Chemistry, Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franqués 1, 08028, Barcelona, Spain
    8. Intelligent Pharma S.L, C/Baldiri Reixac 4, 08028, Barcelona, Spain
    4. Department of Cell Biology, Immunology and Neurosciencies, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
    5. Department of Pharmacology and Therapeutic Chemistry, CSIC Associated Unit, Faculty of Pharmacy, Universitat de Barcelona, Joan XXIII, s/n, 08028, Barcelona, Spain
    6. Department of Pediatrics, Los Angeles Biomedical Research Institute at the Harbor-UCLA Medical Center, RB1, 1124 West Carson Street, Torrance, CA, 90502, USA
  • ISSN:1573-3890
文摘
Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hallmark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM (the calcein acetoxymethyl-ester) is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G1 phase. The metabolic effects of calcein AM on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phosphate pathway was significantly altered. To elucidate whether these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700