Short-term changes in the soil carbon stocks of young oil palm-based agroforestry systems in the eastern Amazon
详细信息    查看全文
  • 作者:Walmir Ribeiro de Carvalho (1)
    Steel Silva Vasconcelos (2)
    Osvaldo Ryohei Kato (2)
    Carlos José Bispo Capela (3) (4)
    Débora Cristina Castellani (3)
  • 关键词:Brazilian Amazonia ; Elaeis guineensis ; Regrowth forest ; Slash ; and ; mulch
  • 刊名:Agroforestry Systems
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:88
  • 期:2
  • 页码:357-368
  • 全文大小:396 KB
  • 参考文献:1. Baena ARC, Falesi IC (1999) Avalia??o do potencial químico e físico dos solos sob diversos sistemas de uso da terra na Col?nia Agrícola de Tomé-A?u, Estado do Pará. Boletim de Pesquisa, 18. Embrapa Amaz?nia Oriental, Belém, p 23
    2. Bayer C, Dick DP, Ribeiro GM, Scheuermann KK (2002) Carbon stocks in organic matter fractions as affected by land use and soil management, with emphasis on no-tillage effect. Cienc Rural 32:401-06
    3. Bernoux M, Cerri CC, Neill C, Moraes JL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43-8
    4. Brady NC (1996) Alternatives to slash-and-burn: a global imperative. Agric Ecosys Environ 58:3-1
    5. Brancher T (2010) Estoque e ciclagem de carbono de sistemas agroflorestais em Tomé-A?u, Amaz?nia Oriental. Thesis, Universidade Federal do Pará, Belém
    6. Brasil (2011) Programa nacional de produ??o e uso do biodiesel. http://www.biodiesel.gov.br/. Accessed 5 Apr 2011
    7. Chander K, Goyal S, Nandal DP, Kapoor KK (1998) Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biol Fertil Soils 27:168-72
    8. Davidson EA, Sá TDDA, Carvalho CJR, Figueiredo RDO, Kato MDSA, Kato OR, Ishida FY (2008) An integrated greenhouse gas assessment of an alternative to slash-and-burn agriculture in eastern Amazonia. Glob Change Biol 14:1-0
    9. Denich M, Vielhauer K, Kato M, Block A, Kato OR, Sá T, Lücke W, Vlek PLG (2004) Mechanized land preparation in forest-based fallow systems: the experience from Eastern Amazonia. Agrofor Syst 61-2(1-):91-06
    10. Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103(2):365-73
    11. Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, K?gel-Knabner I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17?year. Soil Tillage Res 81:87-5
    12. Duxbury JM, Smith MS, Doran JW (1989) Soil organic matter as a source and sink of plant nutrients. In: Coleman DC, Oades JM, Uehara G (eds) Dynamics of soil organic matter in tropical ecosystems. University of Hawaii, Honolulu, pp 33-7
    13. Embrapa (1997) Manual de metodos de analise de solo, 2nd edn. EMBRAPA-CNPS, Rio de Janeiro
    14. Forseth IN, Teramura AH (1987) Field photosynthesis, microclimate and water relations of an exotic temperate liana, / Pueraria lobata, kudzu. Oecologia 71:262-67
    15. Fraz?o LA, Paustian K, Pellegrino Cerri CE, Cerri CC (2012) Soil carbon stocks and changes after oil palm introduction in the Brazilian Amazon. GCB Bioenergy. doi:10.1111/j.1757-1707.2012.01196.x
    16. H?ger A (2012) The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agrofor Syst. doi:10.1007/s10457-012-9545-1
    17. Hairiah K, Sitompul SM, van Noordwijk M, Palm CA (2001) Carbon stocks of tropical land use systems as part of the global carbon balance: effects of forest conversion and options for clean development activities. Alternatives to slash-and-burn (ASB) Lecture Note 4. ICRAF, Bogor, Indonesia
    18. Hamza MA, Anderson WK (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82:121-45
    19. Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L (1992) Light-fraction organic matter in soils from long-term crop rotations. Soil Sci Soc Am J 56:1799-806
    20. Jourdan C, Rey H (1997) Architecture and development of the oil-palm ( / Elaeis guineensis Jacq.) root system. Plant Soil 189:33-8
    21. Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sustain For 21:1-0
    22. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, New York
    23. Law MC, Balasundram SK, Ahmed OH, Harun MH (2009) Spatial variability of soil organic carbon in oil palm. Int J Soil Sci 4:93-03
    24. Moreira A, Fageria NK (2009) Yield, uptake, and retranslocation of nutrients in banana plants cultivated in upland soil of Central Amazonian. J Plant Nutr 32:443-57. doi:10.1080/01904160802660750
    25. Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43-4
    26. Neumann-Cosel L, Zimmermann B, Hall JS, van Breugel M, Elsenbeer H (2011) Soil carbon dynamics under young tropical secondary forests on former pastures—a case study from Panama. For Ecol Manag 261(10):1625-633. doi:10.1016/j.foreco.2010.07.023
    27. Palm CA, Woomer PL, Alegre J, Arevalo L, Castilla C, Cordeiro DG, Feigl B, Hairiah K, Kotto-Same J, Mendes A, Moukam A, Murdiyarso D, Njomgang R, Parton WJ, Ricse A, Rodrigues V, Sitompul SM, van Noordwijk M (2000) Carbon sequestration and trace gas emissions in slash-and-burn and alternative land uses in the humid tropics. Alternatives to Slash-and-Burn Programme, Nairobi
    28. Reichert JM, Reinert DJ, Brada JA (2003) Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ci Ambiente 27:29-8
    29. Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York
    30. Silva M Jr, Desjardins T, Sarrazin M, Melo V, Martins P, Santos ER, Carvalho C (2009) Carbon content in Amazonian Oxisols after forest conversion to pasture. Rev Bras Cienc Solo 33:1603-611
    31. Sisti CPJ, Santos H, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13?years of conventional or zero tillage in southern Brazil. Soil Tillage Res 76:39-8
    32. Smith NJH, Fik TJ, PdT A, Falesi IC, Serr?o EAS (1995) Agroforestry developments and potential in the Brazilian Amazon. Land Degrad Dev 6(4):251-63. doi:10.1002/ldr.3400060406
    33. Sommer R, Vlek PLG, Sá T, Vielhauer K, Coelho R, F?lster H (2004) Nutrient balance of shifting cultivation by burning or mulching in the Eastern Amazon—evidence for subsoil nutrient accumulation. Nutr Cycl Agroecosyst 68:257-71
    34. Tully KL, Lawrence D, Wood SA (2013) Organically managed coffee agroforests have larger soil phosphorus but smaller soil nitrogen pools than conventionally managed agroforests. Biogeochemistry 115:385-97. doi:10.1007/s10533-013-9842-4
    35. Udotek IA (2012) Characterization of ash made from oil palm empty fruit bunches. Int J Environ Sci 3:518-24
    36. United States Department of Agriculture—USDA (2012) Production, supply and distribution. http://www.fas.usda.gov/psdonline/psdQuery.aspx. Accessed 2 Mar 2012
    37. Vlek PLG, Kühne RF, Denich M (1997) Nutrient resources for crop production in the tropics. Phil Trans R Soc Lond B 352:975-85
    38. Yui S, Yeh S (2013) Land use change emissions from oil palm expansion in Pará, Brazil depend on proper policy enforcement on deforested lands. Environ Res Lett 8:1-
    39. Zarin DJ, Davidson EA, Brondizio E, Vieira ICG, Sá T, Feldpausch T, Schuur EAG, Mesquita R, Moran E, Delamonica P, Ducey MJ, Hurtt GC, Salimon C, Denich M (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers Ecol Environ 3(7):365-69
  • 作者单位:Walmir Ribeiro de Carvalho (1)
    Steel Silva Vasconcelos (2)
    Osvaldo Ryohei Kato (2)
    Carlos José Bispo Capela (3) (4)
    Débora Cristina Castellani (3)

    1. Programa de Pos-graduacao em Agronomia, Universidade Federal Rural da Amazonia, Belem, PA, Brazil
    2. Embrapa Amazonia Oriental, Belem, PA, Brazil
    3. Natura Inovacao e Tecnologias de Produtos Ltda, Cajamar, SP, Brazil
    4. Universidade do Estado do Para, Belem, PA, Brazil
  • ISSN:1572-9680
文摘
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0-0?cm depth were significantly higher in the low (91.8?±?3.1?Mg?C?ha?) and high (87.6?±?3.3?Mg?C?ha?) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0?±?2.4?Mg?C?ha?) and traditional agroforestry (68.4?±?4.9?Mg?C?ha?) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7?±?2.3?Mg?C?ha? and between oil palm: 10.6?±?0.5?Mg?C?ha?) and the strip area (17.0?±?1.4?Mg?C?ha?) at 0-?cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6-.3?Mg?C?ha??year?) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700