Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata
详细信息    查看全文
  • 作者:Mirko Balestri (1)
    Alessio Ceccarini (2)
    Laura Maria Costantina Forino (1)
    Ivan Zelko (3)
    Michal Martinka (4)
    Alexander Lux (4)
    Monica Ruffini Castiglione (1)
  • 关键词:Cadmium uptake ; Cadmium tolerance ; Phytoremediation ; Pteris vittata ; Root adaptive response
  • 刊名:Planta
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:239
  • 期:5
  • 页码:1055-1064
  • 全文大小:
  • 参考文献:1. Benavides M, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:49-5. doi:10.1590/S1677-04202005000100003 CrossRef
    2. Brundrett MC, Enstone DE, Peterson CA (1988) A berberine–aniline blue fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146:133-42. doi:10.1007/BF01405922 CrossRef
    3. Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan red 7B or fluoral yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66:111-16. doi:10.3109/10520299109110562 CrossRef
    4. Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z (2002) Arsenic hyperaccumulator / Pteris vittata L. and its arsenic accumulation. Chinese Sci Bull 47:902-05. doi:10.1360/02tb9202 CrossRef
    5. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1-1. doi:10.1093/aob/mcn207 CrossRef
    6. Degraeve N (1981) Carcinogenic, teratogenic and mutagenic effects of cadmium. Mutat Res 86:115-35. doi:10.1016/0165-1110(81)90035-X CrossRef
    7. Drava G, Roccotiello E, Minganti V, Manfredi A, Cornara L (2012) Effects of cadmium and arsenic on / Pteris vittata under hydroponic conditions. Environ Tox Chem 31:1375-380. doi:10.1002/etc.1835 CrossRef
    8. Driouich A, Durand C, Vicré M (2007) Formation and separation of root border cells. Trends Plant Sci 12:14-9. doi:10.1016/j.tplants.2006.11.003 CrossRef
    9. ?ur?eková K, Huttová J, Mistrík I, Ollé M, Tamás L (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61-8. doi:10.1007/s11104-006-9111-6 CrossRef
    10. Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B (2004) Effect of heavy metals on growth of / Pteris vittata. Environ Pollut 132:289-96. doi:10.1016/j.envpol.2004.04.020 CrossRef
    11. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123-42. doi:10.2307/2440500 CrossRef
    12. Fischer RA (1968) Stomatal opening in isolated epidermal strips of / Vicia faba. I. Response to light and to CO2-free air. Plant Physiol 43:1947-952. doi:10.1104/pp.43.12.1947 CrossRef
    13. Forino LMC, Ruffini Castiglione M, Bartoli G, Balestri M, Andreucci A, Tagliasacchi AM (2012) Arsenic-induced morphogenic response in roots of arsenic hyperaccumulator fern / Pteris vittata. J Hazard Mater 235-36:271-78. doi:10.1016/j.jhazmat.2012.07.051 CrossRef
    14. Groudev SN, Spasova II, Georgiev PS (2001) In situ bioremediation of soils contaminated with radioactive elements and toxic heavy metals. Int J Miner Process 62:301-08. doi:10.1016/S0301-7516(00)00061-2 CrossRef
    15. Gupta M, Devi S (1994) Chronic toxicity of cadmium in / Pteris vittata, a roadside fern. Ecotoxicology 3:235-47. doi:10.1007/BF00117990 CrossRef
    16. Kim MJ, Ahn KH, Jung Y, Lee S, Lim BR (2003) Arsenic, cadmium, chromium, copper, lead, and zinc contamination in mine tailings and nearby streams of three abandoned mines from Korea. Bull Environ Contam Toxicol 70:942-47. doi:10.1007/s00128-003-0073-6 CrossRef
    17. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator / Arabidopsis halleri. Planta 212:75-4. doi:10.1007/s004250000366 CrossRef
    18. Li WX, Chen TB, Chen Y, Lei M (2005) Role of trichome of / Pteris vittata L. in arsenic hyperaccumulation. Sci China Ser C 48:148-54. doi:10.1007/BF02879667
    19. Li T, Yang X, Lu L, Islam E, He Z (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mater 169:734-41. doi:10.1016/j.jhazmat.2009.04.004 CrossRef
    20. Lillie RD (1965) Histopathology Technique and Practical Histochemistry. McGrawn-Hill Book Company, London
    21. Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator / Pteris vittata. New Phytol 156:195-03. doi:10.1046/j.1469-8137.2002.00512.x CrossRef
    22. Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21-7. doi:10.1093/jxb/erq281 CrossRef
    23. Martinka M, Lux A (2004) Response of roots of three populations of / Silene dioica to cadmium treatment. Biologia 59:185-89
    24. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15:523-30
    25. Miyasaka SC, Hawes MC (2001) Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiol 125:1978-987. doi:10.1104/pp.125.4.1978 CrossRef
    26. Pielichowska M, Wierzbicka M (2004) Uptake and localization of cadmium by / Biscutella leavigata, a cadmium hyperaccumulator. Acta Biol Cracov Bot 46:57-3
    27. Pineros MA, Shaff JE, Kochian LV (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of / Thlaspi species and wheat. Plant Physiol 116:1393-401. doi:10.1104/pp.116.4.1393 CrossRef
    28. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98-05. doi:10.1016/j.tplants.2007.01.004 CrossRef
    29. Redjala T, Zelko I, Sterckeman T, Legué V, Lux A (2011) Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot 71:241-48. doi:10.1016/j.envexpbot.2010.12.010 CrossRef
    30. Sass JE (1958) Botanical microtechnique, 3rd edn. Iowa State College Press, Ames
    31. Seregin IV, Ivanov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol 44:791-96
    32. Tu C, Ma L (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641-47. doi:10.2134/jeq2002.0641 CrossRef
    33. Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I (2009) Silicon mitigates cadmium inhibitory effects in young maize plants. Environ Exp Bot 67:52-8. doi:10.1016/j.envexpbot.2009.06.012 CrossRef
    34. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364-72. doi:10.1016/j.pbi.2009.05.001 CrossRef
    35. Vieira da Cunha KP, Araújo do Nascimento CW, de Magalh?es Mendon?a Pimentel R, Pereira Ferreira C (2008) Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming. J Hazard Mater 160:228-34. doi:10.1016/j.jhazmat.2008.02.118 CrossRef
    36. Wang J, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in / Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552-561. doi:10.1104/pp.008185 CrossRef
    37. Xiao X, Chen T, An Z, Lei M, Huang Z, Liao X, Liu Y (2008) Potential of / Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation. J Environ Sci (China) 20:62-7. doi:10.1016/S1001-0742(08)60009-1 CrossRef
    38. Zelko I, Lux A (2004) Effect of cadmium on / Karwinskia humboldtiana roots. Biologia 59:205-09
    39. Zelko I, Lux A, Sterckeman T, Martinka M, Kollárová K, Li?ková D (2012) An easy method for cutting and fluorescent staining of thin roots. Ann Bot 110:475-78. doi:10.1093/aob/mcs046 CrossRef
    40. Zheng R, Li H, Jiang R, R?mheld V, Zhang F, Zhao FJ (2011) The role of root hairs in cadmium acquisition by barley. Environ Pollut 159:408-15. doi:10.1016/j.envpol.2010.10.034 CrossRef
  • 作者单位:Mirko Balestri (1)
    Alessio Ceccarini (2)
    Laura Maria Costantina Forino (1)
    Ivan Zelko (3)
    Michal Martinka (4)
    Alexander Lux (4)
    Monica Ruffini Castiglione (1)

    1. Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
    2. Department of Chemistry and Industrial Chemistry, University of Pisa, via Risorgimento 35, 56126, Pisa, Italy
    3. Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38, Bratislava, Slovak Republic
    4. Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, 842 15, Bratislava, Slovak Republic
  • ISSN:1432-2048
文摘
Cadmium uptake, tissue localization and structural changes induced at cellular level are essential to understand Cd tolerance in plants. In this study we have exposed plants of Pteris vittata to different concentrations of CdCl2 (0, 30, 60, 100?μM) to evaluate the tolerance of the fern to cadmium. Cadmium content determination and its histochemical localization showed that P. vittata not only takes up, but also transports and accumulates cadmium in the aboveground tissues, delocalizing it mainly in the less bioactive tissues of the frond, the trichomes and the scales. Cadmium tolerance in P. vittata was strictly related to morphogenic response induced by the metal itself in the root system. Adaptive response regarded changes of the root apex size, the developmental pattern of root hairs, the differentiation of xylem elements and endodermal suberin lamellae. All the considered parameters suggest that, in our experimental conditions, 60?μM of Cd may represent the highest concentration that P. vittata can tolerate; indeed this Cd level even improves the absorbance features of the root and allows good transport and accumulation of the metal in the fronds. The results of this study can provide useful information for phytoremediation strategies of soils contaminated by Cd, exploiting the established ability of P. vittata to transport, delocalize in the aboveground biomass and accumulate polluting metals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700