Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT
详细信息    查看全文
  • 作者:G. Trottet ; J.-P. Raulin ; A. Mackinnon ; G. Giménez?de?Castro
  • 关键词:Radio bursts ; microwave ; X ; ray bursts ; association with flares ; X ; ray burst ; spectrum ; Chromosphere ; models ; Heating ; chromospheric ; Heating ; in flares
  • 刊名:Solar Physics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:290
  • 期:10
  • 页码:2809-2826
  • 全文大小:1,587 KB
  • 参考文献:Avrett, E.H., Loeser, R.: 2003, Solar and stellar atmospheric modeling using the pandora computer program. In: Piskunov, N., Weiss, W.W., Gray, D.F. (eds.) Modelling of Stellar Atmospheres, IAU Symp. 210, A21.
    Avrett, E.H., Loeser, R.: 2008, Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. 175, 229. CrossRef ADS
    Bagalá, L.G., Bauer, O.H., Fernández Borda, R., Francile, C., Haerendel, G., Rieger, R., Rovira, M.G.: 1999, The new H\(\alpha\) solar telescope at the German–Argentinian solar observatory. In: Wilson, A. et al. (ed.) Magnetic Fields and Solar Processes, SP-448, 469.
    Bai, T.: 1982, Transport of energetic electrons in a fully ionized hydrogen plasma. Astrophys. J. 259, 341. CrossRef ADS
    Bastian, T.S., Benz, A.O., Gary, D.E.: 1998, Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131. CrossRef ADS
    Brown, J.C.: 1972, The directivity and polarisation of thick target X-ray bremsstrahlung from solar flares. Solar Phys. 26, 441. CrossRef ADS
    Butler, S.T., Buckingham, M.J.: 1962, Energy loss of a fast ion in a plasma. Phys. Rev. 126, 1. MathSciNet CrossRef ADS
    De la Luz, V., Lara, A., Raulin, J.-P.: 2011, Synthetic spectra of radio, millimeter, sub-millimeter, and infrared regimes with non-local thermodynamic equilibrium approximation. Astrophys. J. 737, 1. CrossRef ADS
    De la Luz, V., Lara, A., Mendoza-Torres, J.E., Selhorst, C.L.: 2010, Pakal: a three-dimensional model to solve the radiative transfer equation. Astrophys. J. Suppl. 188, 437. CrossRef ADS
    Deming, D., Jennings, D.E., Jefferies, J., Lindsey, C.: 1991, In: Cox, A.N., Livingston, W.C., Matthews, M.S. (eds.) Physics of the Infrared Spectrum, 933.
    Emslie, A.G.: 1978, The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. Astrophys. J. 224, 241. CrossRef ADS
    Gould, R.J.: 1972a, Energy loss of a relativistic ion in a plasma. Physica 58, 379. CrossRef ADS
    Gould, R.J.: 1972b, Energy loss of fast electrons and positrons in a plasma. Physica 60, 145. CrossRef ADS
    Guidice, D.A.: 1979, Sagamore Hill Radio Observatory, Air Force Geophysics Laboratory, Hanscom air force base, Massachusetts 01731. Report. Bull. Am. Astron. Soc. 11, 311. ADS
    Heinzel, P., Avrett, E.H.: 2012, Optical-to-radio continua in solar flares. Solar Phys. 277, 31. CrossRef ADS
    Kaufmann, P., Levato, H., Cassiano, M.M., Correia, E., Costa, J.E.R., Giménez de Castro, C.G., Godoy, R., Kingsley, R.K., Kingsley, J.S., Kudaka, A.S., Marcon, R., Martin, R., Marun, A., Melo, A.M., Pereyra, P., Raulin, J., Rose, T., Silva Valio, A., Walber, A., Wallace, P., Yakubovich, A., Zakia, M.B.: 2008, New telescopes for ground-based solar observations at submillimeter and mid-infrared. In: Soc. Photo-Optical Instr. Eng. (SPIE) Conf. Ser., 7012, 70120L.
    Kaufmann, P., White, S.M., Freeland, S.L., Marcon, R., Fernandes, L.O.T., Kudaka, A.S., de Souza, R.V., Aballay, J.L., Fernandez, G., Godoy, R., Marun, A., Valio, A., Raulin, J.-P., Giménez de Castro, C.G.: 2013, A bright impulsive solar burst detected at 30 THz. Astrophys. J. 768, 134. CrossRef ADS
    Kaufmann, P., Marcon, R., Abrantes, A., Bortolucci, E.C., Fernandes, L.O.T., Kropotov, G.I., Kudaka, A.S., Machado, N., Marun, A., Nikolaev, V., Silva, A., da Silva, C.S., Timofeevsky, A.: 2014, THz photometers for solar flare observations from space. Exp. Astron. 37, 579. CrossRef ADS
    Kaufmann, P., White, S.M., Marcon, R., Kudaka, A.S., Cabezas, D.P., Cassiano, M.M., Francile, C., Fernandes, L.O.T., Hidalgo Ramirez, R.F., Luoni, M., Marun, A., Pereyra, P., de Souza, R.V.: 2015, Bright 30 THz impulsive solar bursts. J. Geophys. Res. 120, 4155. CrossRef
    Ka?parová, J., Heinzel, P., Karlicky, M., Moravec, Z., Varady, M.: 2009a, Far-IR and radio thermal continua in solar flares. Cent. Eur. Astrophys. Bull. 33, 309. ADS
    Ka?parová, J., Varady, M., Heinzel, P., Karlicky, M., Moravec, Z.: 2009b, Response of optical hydrogen lines to beam heating. I. Electron beams. Astron. Astrophys. 499, 923. CrossRef ADS
    Kerr, G.S., Fletcher, L.: 2014, Physical properties of white-light sources in the 2011 February 15 solar flare. Astrophys. J. 783, 98. CrossRef ADS
    Krucker, S., Saint-Hilaire, P., Hudson, H.S., Haberreiter, M., Martinez-Oliveros, J.C., Fivian, M.D., Hurford, G., Kleint, L., Battaglia, M., Kuhar, M., Arnold, N.G.: 2015, Co-spatial white light and hard X-ray flare footpoints seen above the solar limb. Astrophys. J. 802, 19. CrossRef ADS
    Machado, M.E., Emslie, A.G., Avrett, E.H.: 1989, Radiative backwarming in white-light flares. Solar Phys. 124, 303. CrossRef ADS
    Machado, M.E., Avrett, E.H., Vernazza, J.E., Noyes, R.W.: 1980, Semiempirical models of chromospheric flare regions. Astrophys. J. 242, 336. CrossRef ADS
    MacKinnon, A.L., Tone
  • 作者单位:G. Trottet (1)
    J.-P. Raulin (2)
    A. Mackinnon (3)
    G. Giménez?de?Castro (2)
    P. J. A. Sim?es (3)
    D. Cabezas (2)
    V. de?La Luz (4)
    M. Luoni (5)
    P. Kaufmann (2) (6)

    1. LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195, Meudon, France
    2. CRAAM Universidade Presbiteriana Mackenzie, S?o Paulo, Brazil
    3. School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ, UK
    4. SCiESMEX, Instituto de Geofisica, Unidad Michoacan, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan, CP 58190, Mexico
    5. IAFE, University of Buenos Aires, Buenos Aires, Argentina
    6. CCS, University of Campinas, Campinas, Brazil
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Extraterrestrial Physics and Space Sciences
    Astrophysics
  • 出版者:Springer Netherlands
  • ISSN:1573-093X
文摘
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. (Astrophys. J. 768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), \(\mathrm{H}\alpha\), and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and \(\alpha\) particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at \({\sim}\,800~\mbox{keV}\). We show that the high-energy part (above \({\sim}\, 800~\mbox{keV}\)) of this distribution is responsible for the high-frequency radio emission (\({>}\, 20~\mbox{GHz}\)) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most (\({\sim}\,80~\%\)) of the observed 30 THz radiation can be attributed to thermal free–free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J. 242, 336, 1980), this thin source is found to be at temperatures T \({\sim}\,8000~\mbox{K}\) and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and \(\alpha\) particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T \({\sim}\, 5000~\mbox{K}\), below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation. Keywords Radio bursts, microwave X-ray bursts, association with flares X-ray burst, spectrum Chromosphere, models Heating, chromospheric Heating, in flares

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700