Catalyst support materials for prominent mineralization of bisphenol A in catalytic ozonation process
详细信息    查看全文
  • 作者:Magda Cotman ; Boštjan Erjavec…
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:23
  • 期:10
  • 页码:10223-10233
  • 全文大小:699 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
  • 卷排序:23
文摘
Degradation of aqueous solution of bisphenol A (BPA) has been investigated through non-catalytic and catalytic ozonation treatments conducted in a semi-batch reactor. Non-catalytic ozonation resulted in complete degradation of aqueous BPA in less than 3 min but did not completely convert the reaction intermediates of BPA ozonation into CO2 and H2O. The main goal of this study was to find an effective heterogeneous catalyst to increase the extent of BPA mineralization at different pH conditions. In this way, the most promising catalyst carrier was γ-Al2O3; at pH = 8.0, 68 % of total organic carbon (TOC) was removed in the period of 75 min, out of which 42 % was attributed to mineralization. Finally, 3.0 wt.% Ru/γ-Al2O3 catalyst exhibited over 82 % of TOC removal after 240 min of ozonation at pH = 5.9, of which 56 % was mineralized.KeywordsCatalytic ozonationBPA removalMineralizationγ-Al2O3Ru/γ-Al2O3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700