The Wnt/-catenin pathway in human fibrotic-like diseases and its eligibility as a therapeutic target
详细信息    查看全文
  • 作者:Maria Vittoria Enzo ; Marco Rastrelli…
  • 关键词:Wnt pathway ; Adenomatous polyposis coli ; Beta ; catenin ; Inflammatory factors ; Fibrosis ; Desmoid ; like fibromatosis
  • 刊名:Molecular and Cellular Therapies
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:3
  • 期:1
  • 全文大小:2224KB
  • 参考文献:1.Bafico A, Liu G, Goldin L, Harris V, Aaronson SA. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell. 2004;6:497鈥?06.PubMed CrossRef
    2.Akiri G, Cherian MM, Vijayakumar S, Liu G, Bafico A, Aaronson SA. Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene. 2009;28:2163鈥?2.PubMed CrossRef
    3.Eisenmann DM. Wnt signaling. WormBook. 2005;25:1鈥?7.
    4.Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis鈥揳 look outside the nucleus. Science. 2000;287:1606鈥?.PubMed CrossRef
    5.Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature. 2000;407:186鈥?.PubMed CrossRef
    6.Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59鈥?8.PubMed CrossRef
    7.Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4:68鈥?5.PubMed Central PubMed CrossRef
    8.Semenov MV, Habas R, Macdonald BT, He X. SnapShot: noncanonical Wnt signaling pathways. Cell. 2007;131:1378.PubMed CrossRef
    9.Simons M, Mlodzik M. Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet. 2008;42:517鈥?0.PubMed Central PubMed CrossRef
    10.Kikuchi A, Yamamoto H, Sato A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 2009;19:119鈥?9.PubMed CrossRef
    11.Castanon I, Abrami L, Holtzer L, Heisenberg CP, van der Goot FG, Gonz谩lez-Gait谩n M. Anthrax toxin receptor 2a controls mitotic spindle positioning. Nat Cell Biol. 2013;15:28鈥?9.PubMed CrossRef
    12.Wu J, Roman AC, Carvajal Gonzalez JM, Mlodzik M. Wg and Wnt4 provide long-range directional input to planar cell polarity orientation in Drosophila. Nat Cell Biol. 2013;15:1045鈥?5.PubMed Central PubMed CrossRef
    13.Zallen JA. Planar polarity and tissue morphogenesis. Cell. 2007;129:1051鈥?3.PubMed CrossRef
    14.van Amerongen R. Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol. 2012;1:4(10).
    15.Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11鈥?6.PubMed CrossRef
    16.MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9鈥?6.PubMed Central PubMed CrossRef
    17.Jamieson C, Sharma M, Henderson BR. Regulation of -catenin nuclear dynamics by GSK-3 involves a LEF-1 positive feedback loop. Traffic. 2011;12:983鈥?9.PubMed CrossRef
    18.He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004;131:1663鈥?7.PubMed CrossRef
    19.Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 2006;281:22429鈥?3.PubMed CrossRef
    20.Kimelman D, Xu W. beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006;25:7482鈥?1.PubMed CrossRef
    21.Huber AH, Weis WI. The structure of the -catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by -catenin. Cell. 2001;105:391鈥?02.PubMed CrossRef
    22.Xing Y, Clements WK, Kimelman D, Xu W. Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev. 2003;17:2753鈥?4.PubMed Central PubMed CrossRef
    23.Hart M, Concordet JP, Lassot I, Albert I, Del Los SR, Durand H, et al. The F-box protein beta-TrCP associates with phosphorylated beta-catenin and regulates its activity in the cell. Curr Biol. 1999;9:207鈥?0.PubMed CrossRef
    24.Mao J, Wang J, Liu B, Pan W, Farr 3rd GH, Flynn C, et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. 2001;7:801鈥?.PubMed CrossRef
    25.Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135:367鈥?5.PubMed CrossRef
    26.Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci U S A. 2004;101:2882鈥?.PubMed Central PubMed CrossRef
    27.Schwarz-Romond T, Metcalfe C, Bienz M. Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci. 2007;120:2402鈥?2.PubMed CrossRef
    28.Reya T, Clevers H. Wnt signaling in stem cells and cancer. Nature. 2005;434:843鈥?0.PubMed CrossRef
    29.van Amerongen R, Nusse R. Towards an integrated view of Wnt signalling in development. Development. 2009;136:3205鈥?4.PubMed CrossRef
    30.Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;17:10鈥?.
    31.Ring L, Neth P, Weber C, Steffens S, Faussner A. -Catenin-dependent pathway activation by both promiscuous "canonical" WNT3a-, and specific "non canonical"WNT4- and WNT5a FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. Cell Signal. 2014;26:260鈥?.PubMed CrossRef
    32.Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781鈥?10.PubMed CrossRef
    33.Bhanot P, Brink M, Samos CH, Hsieh JC, Wang Y, Macke JP, et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature. 1996;18:225鈥?0.CrossRef
    34.Umbhauer M, Djiane A, Goisset C, Penzo-M茅ndez A, Riou JF, Boucaut JC, et al. The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. EMBO J. 2000;19:4944鈥?4.PubMed Central PubMed CrossRef
    35.Punchihewa C, Ferreira AM, Cassell R, Rodrigues P, Fujii N. Sequence requirement and subtype specificity in the high-affinity interaction between human frizzled and dishevelled proteins. Protein Sci. 2009;18:994鈥?002.PubMed Central PubMed CrossRef
    36.Binnerts ME, Kim KA, Bright JM, Patel SM, Tran K, Zhou M, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci U S A. 2007;104:14700鈥?.PubMed Central PubMed CrossRef
    37.Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316:1619鈥?2.PubMed CrossRef
    38.Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10:468鈥?7.PubMed CrossRef
    39.Chen S, Bubeck D, MacDonald BT, Liang WX, Mao JH, Malinauskas T, et al. Structural and functional studies of LRP6 ectodomain reveal a platform for Wnt signaling. Dev Cell. 2011;21:848鈥?1.PubMed Central PubMed CrossRef
    40.Chen J, Yan H, Ren DN, Yin Y, Li Z, He Q, et al. LRP6 dimerization through its LDLR domain is required for robust canonical Wnt pathway activation. Cell Signal. 2014;26:1068鈥?4.PubMed CrossRef
    41.Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development. 2005;132:4421鈥?6.PubMed CrossRef
    42.Seifert JR, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet. 2007;8:126鈥?8.PubMed CrossRef
    43.Gonz谩lez-Sancho JM, Greer YE, Abrahams CL, Takigawa Y, Baljinnyam B, Lee KH, et al. Functional consequences of Wnt-induced dishevelled 2 phosphorylation in canonical and noncanonical Wnt signaling. J Biol Chem. 2013;288:9428鈥?7.PubMed Central PubMed CrossRef
    44.Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 2010;24:2517鈥?0.PubMed Central PubMed CrossRef
    45.Yanfeng WA, Berhane H, Mola M, Singh J, Jenny A, Mlodzik M. Functional dissection of phosphorylation of Disheveled in Drosophila. Dev Biol. 2011;360:132鈥?2.PubMed Central PubMed
    46.Price MA. CKI, there鈥檚 more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev. 2006;20:399鈥?10.PubMed CrossRef
    47.Sakanaka C, Williams LT. Functional domains of axin: importance of the C terminus as an oligomerization domain. J Biol Chem. 1999;274:14 090鈥?.CrossRef
    48.Fiedler M, Mendoza-Topaz C, Rutherford TJ, Mieszczanek J, Bienz M. Dishevelled interacts with the DIX domain polymerisation interface of Axin to interfere with its function in downregulating b-catenin. Proc Natl Acad Sci U S A. 2011;108:1937鈥?2.PubMed Central PubMed CrossRef
    49.Faux MC, Coates JL, Catimel B, Cody S, Clayton AH, Layton MJ, et al. Recruitment of Adenomatous polyposis coli and b-catenin to axin-puncta. Oncogene. 2008;27:5808鈥?0.PubMed CrossRef
    50.Schwarz-Romond T, Merrifield C, Nichols BJ, Bienz M. The Wnt signalling effector Dishevelled forms dynamic protein assemblies rather than stable associations with cytoplasmic vesicles. J Cell Sci. 2005;118:5269鈥?7.PubMed CrossRef
    51.Mendoza-Topaz C, Mieszczanek J, Bienz M. The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled. Open Biol. 2011;3:110013.CrossRef
    52.Luo W, Zou H, Jin L, Lin S, Li Q, Ye Z, et al. Axin contains three separable domains that confer intramolecular, homodimeric, and heterodimeric interactions involved in distinct functions. J Biolo Chem. 2005;280:5054鈥?0.CrossRef
    53.Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y, et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol. 2007;14:484鈥?2.PubMed CrossRef
    54.Behrens J, Jerchow BA, Wurtele M, Grimm J, Asbrand C, Wirtz R, et al. Functional interaction of an axin homolog, conductin, with -catenin, APC, and GSK3b. Science. 1998;280:596鈥?.PubMed CrossRef
    55.Spink KE, Polakis P, Weis WI. Structural basis of the Axin鈥揂denomatous polyposis coli interaction. EMBO J. 2000;19:2270鈥?.PubMed Central PubMed CrossRef
    56.Su Y, Fu C, Ishikawa S, Stella A, Kojima M, Shitoh K, et al. APC is essential for targeting phosphorylated beta-catenin to the SCF(beta-TrCP) ubiquitin ligase. Mol Cell. 2008;32:652鈥?1.PubMed CrossRef
    57.Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589鈥?00.PubMed CrossRef
    58.Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.PubMed Central PubMed CrossRef
    59.Schneikert J, Brauburger K, Behrens J. APC mutations in colorectal tumours from FAP patients are selected for CtBP-mediated oligomerization of truncated APC. Hum Mol Genet. 2011;20:3554鈥?4.PubMed CrossRef
    60.Katsanis N, Fisher EM. A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics. 1998;47:294鈥?.PubMed CrossRef
    61.Cliffe A, Hamada F, Bienz M. A role of Dishevelled in relocating Axin to the plasma membrane during Wingless signaling. Curr Biol. 2003;13:960鈥?.PubMed CrossRef
    62.Valvezan AJ, Zhang F, Diehl JA, Klein PS. Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. J Biol Chem. 2012;287:3823鈥?2.PubMed Central PubMed CrossRef
    63.Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, et al. Axin-mediated CKI phosphorylation of -catenin at Ser 45: A molecular switch for the Wnt pathway. Genes Dev. 2002;16:1066鈥?6.PubMed Central PubMed CrossRef
    64.Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of -catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837鈥?7.PubMed CrossRef
    65.Hino S, Michiue T, Asashima M, Kikuchi A. Casein kinase I蔚 enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of -catenin. J Biol Chem. 2003;278:14066鈥?3.PubMed CrossRef
    66.Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P, et al. Casein kinase 1纬 couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005;438:867鈥?2.PubMed CrossRef
    67.Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19:150鈥?.PubMed CrossRef
    68.Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387鈥?8.PubMed CrossRef
    69.Brown RL, Reinke LM, Damerow MS, Perez D, Chodosh LA, Yang J, et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest. 2011;121:1064鈥?4.PubMed Central PubMed CrossRef
    70.Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, et al. Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J. 2003;22:494鈥?01.PubMed Central PubMed CrossRef
    71.Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res. 2007;32:577鈥?5.PubMed Central PubMed CrossRef
    72.Rosenbluh J, Wang X, Hahn WC. Genomic insights into WNT/-catenin signaling. Trends Pharmacol Sci. 2014;35:103鈥?.PubMed Central PubMed
    73.Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, et al. -catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis. 2012;71:761鈥?.PubMed Central PubMed CrossRef
    74.Conacci-Sorrell M, Zhurinsky J, Ben-Ze鈥檈v A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest. 2002;109:987鈥?1.PubMed Central PubMed CrossRef
    75.Jamieson C, Sharma M, Henderson BR. Targeting the -catenin nuclear transport pathway in cancer. Semin Cancer Biol. 2014;27:20鈥?.PubMed CrossRef
    76.Huber AH, Nelson WJ, Weis WI. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell. 1997;90:871鈥?2.PubMed CrossRef
    77.Xu W, Kimelman D. Mechanistic insights from structural studies of beta-catenin and its binding partners. J Cell Sci. 2007;120:3337鈥?4.PubMed CrossRef
    78.Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998;391:493鈥?.PubMed CrossRef
    79.Daugherty RL, Gottardi CJ. Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology. 2007;22:303鈥?.PubMed Central PubMed CrossRef
    80.Clevers H, Nusse R. Wnt/-catenin signaling and disease. Cell. 2012;149:1192鈥?05.PubMed CrossRef
    81.Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, et al. Activation of canonical Wnt signalling is required for TGF--mediated fibrosis. Nat Commun. 2012;13:3鈥?35.
    82.Sem毛nov MV, Zhang X, He X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J Biol Chem. 2008;283:21427鈥?2.PubMed Central PubMed CrossRef
    83.Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469鈥?0.PubMed CrossRef
    84.Guimier A, Ragazzon B, Assi茅 G, Tissier F, Dousset B, Bertherat J, et al. AXIN genetic analysis in adrenocortical carcinomas updated. J Endocrinol Invest. 2013;36:1000鈥?.PubMed
    85.Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74:1043鈥?0.PubMed Central PubMed CrossRef
    86.Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513鈥?2.PubMed CrossRef
    87.Jin T. The WNT signalling pathway and diabetes mellitus. Diabetologia. 2008;51:1771鈥?0.PubMed CrossRef
    88.Nishisho I, Nakamura Y, Miyoshi Y, Miki Y, Ando H, Horii A, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665鈥?.PubMed CrossRef
    89.Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159鈥?0.PubMed CrossRef
    90.Nieuwenhuis MH, Mathus-Vliegen LM, Slors FJ, Griffioen G, Nagengast FM, Schouten WR, et al. Genotype-phenotype correlations as a guide in the management of familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2007;5:374鈥?.PubMed CrossRef
    91.Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev. 1999;9:15鈥?1.PubMed CrossRef
    92.Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet. 2000;26:146鈥?.PubMed CrossRef
    93.Xie Q, Chen L, Shan X, Shan X, Tang J, Zhou F, et al. Epigenetic silencing of SFRP1 and SFRP5 by hepatitis B virus X protein enhances hepatoma cell tumorigenicity through Wnt signalling pathway. Int J Cancer. 2014;135:635鈥?6.PubMed CrossRef
    94.Schiefer L, Visweswaran M, Perumal V, Arfuso F, Groth D, Newsholme P, et al. Epigenetic regulation of the secreted frizzled-related protein family in human glioblastoma multiforme. Cancer Gene Ther. 2014;21:297鈥?03.PubMed CrossRef
    95.Stewart DJ, Chang DW, Ye Y, Spitz M, Lu C, Shu X, et al. Wnt signalling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics J. 2014;14:509鈥?2.PubMed CrossRef
    96.Saito T, Mitomi H, Imamhasan A, Hayashi T, Mitani K, Takahashi M, et al. Downregulation of sFRP-2 by epigenetic silencing activates the -catenin/Wnt signaling pathway in esophageal basaloid squamous cell carcinoma. Virchows Arch. 2014;464:135鈥?3.PubMed CrossRef
    97.Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE. Autocrine WNT signalling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res. 2007;9:R63.PubMed Central PubMed CrossRef
    98.Vijayakumar S, Liu G, Rus IA, Yao S, Chen Y, Akiri G, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/-catenin target gene, CDC25A. Cancer Cell. 2011;19:601鈥?2.PubMed Central PubMed CrossRef
    99.Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199鈥?10.PubMed Central PubMed CrossRef
    100.Kuraishy A, Karin M, Grivennikov SI. Tumor promotion via injury- and death-induced inflammation. Immunity. 2011;35:467鈥?7.PubMed Central PubMed CrossRef
    101.Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883鈥?9.PubMed Central PubMed CrossRef
    102.Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 2006;20:7鈥?4.
    103.Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37:1528鈥?2.PubMed CrossRef
    104.Van Linthout S, Miteva K, Tsch枚pe C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102:258鈥?9.PubMed CrossRef
    105.Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 2010;31:24鈥?1.PubMed Central PubMed CrossRef
    106.Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 2005;6:777鈥?4.PubMed Central PubMed CrossRef
    107.Nava P, Koch S, Laukoetter MG, Lee WY, Kolegraff K, Capaldo CT, et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity. 2010;32:392鈥?02.PubMed Central PubMed CrossRef
    108.Dees C, Distler JH. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies? Exp Dermatol. 2013;22:710鈥?.PubMed CrossRef
    109.Guo Y, Xiao L, Sun L, Liu F. Wnt/beta-catenin signaling: a promising new target for fibrosis diseases. Physiol Res. 2012;61:337鈥?6.PubMed
    110.Lam AP, Gottardi CJ. -catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol. 2011;23:562鈥?.PubMed Central PubMed CrossRef
    111.Cheon SS, Cheah AY, Turley S, Nadesan P, Poon R, Clevers H, et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc Natl Acad Sci U S A. 2002;99:6973鈥?.PubMed Central PubMed CrossRef
    112.Verjee LS, Verhoekx JS, Chan JK, Krausgruber T, Nicolaidou V, Izadi D, et al. Unraveling the signalling pathways promoting fibrosis in Dupuytren's disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A. 2013;110:E928鈥?7.PubMed Central PubMed CrossRef
    113.Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, et al. Interactions between -catenin and transforming growth factor- signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 2012;287:7026鈥?8.PubMed Central PubMed CrossRef
    114.Escobar C, Munker R, Thomas JO, Li BD, Burton GV. Update on desmoid tumors. Ann Oncol. 2012;23:562鈥?.PubMed CrossRef
    115.Cohen S, Ad-El D, Benjaminov O, Gutman H. Post-traumatic soft tissue tumors: case report and review of the literature a propos a post-traumatic paraspinaldesmoid tumor. World J Surg Oncol. 2008;6:28.PubMed Central PubMed CrossRef
    116.Tejpar S, Nollet F, Li C, Wunder JS, Michils G, Dal Cin P, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene. 1999;18:6615鈥?0.PubMed CrossRef
    117.Lazar AJ, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, et al. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518鈥?7.PubMed Central PubMed CrossRef
    118.Meneghello C, Ousghir B, Rastrelli M, Anesi L, Sommariva A, Montesco MC, et al. Nuclear GSK-3 segregation in desmoid-type fibromatosis. Histopathology. 2013;62:1098鈥?08.PubMed CrossRef
    119.Caspi M, Zilberberg A, Eldar-Finkelman H, Rosin-Arbesfeld R. Nuclear GSK-3beta inhibits the canonical Wnt signalling pathway in a beta-catenin phosphorylation-independent manner. Oncogene. 2008;27:3546鈥?5.PubMed CrossRef
    120.Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8:1398鈥?06.PubMed CrossRef
    121.Locci P, Bellocchio S, Lilli C, Marinucci L, Cagini L, Baroni T, et al. Synthesis and secretion of transforming growth factor-b1 by human desmoid fibroblast cell line and its modulation by toremifene. J Interferon Cytokine Res. 2001;21:961鈥?0.PubMed CrossRef
    122.Ferenc T, Stali艅ska L, Turant M, Sygut J, Tosik D, Dziki A, et al. Analysis of TGF-beta protein expression in aggressive fibromatosis (desmoid tumor). Pol J Pathol. 2006;57:77鈥?1.PubMed
    123.Amini Nik S, Ebrahim RP, Van Dam K, Cassiman JJ, Tejpar S. TGFb modulates -catenin stability and signaling in mesenchymal proliferations. Exp Cell Res. 2007;313:2887鈥?5.PubMed CrossRef
    124.Mignemi NA, Itani DM, Fasig JH, Keedy VL, Hande KR, Whited BW, et al. Signal transduction pathway analysis in desmoid-type fibromatosis: transforming growth factor-, COX2 and sex steroid receptors. Cancer Sci. 2012;103:2173鈥?0.PubMed Central PubMed CrossRef
    125.Khurana JS, Ogino S, Shen T, Parekh H, Scherbel U, DeLong W, et al. Bone morphogenetic proteins are expressed by both bone-forming and non-bone-forming lesions. Arch Pathol Lab Med. 2004;128:1267鈥?.
    126.Colombo C, Creighton CJ, Ghadimi MP, Bolshakov S, Warneke CL, Zhang Y, et al. Increased midkine expression correlates with desmoid tumour recurrence:a potential biomarker and therapeutic target. J Pathol. 2011;225:574鈥?2.PubMed CrossRef
    127.Liegl B, Leithner A, Bauernhofer T, Windhager R, Guelly C, Regauer S, et al. Immunohistochemical and mutational analysis of PDGF and PDGFR in desmoid tumours: is there a role for tyrosine kinase inhibitors in c-kit-negative desmoid tumours? Histopathology. 2006;49:576鈥?1.PubMed CrossRef
    128.Ishizuka M, Hatori M, Dohi O, Suzuki T, Miki Y, Tazawa C, et al. Expression profiles of sex steroid receptors in desmoid tumors. Tohoku J Exp Med. 2006;210:189鈥?8.PubMed CrossRef
    129.Leithner A, Gapp M, Radl R, Pascher A, Krippl P, Leithner K, et al. Immunohistochemical analysis of desmoid tumours. J Clin Pathol. 2005;58:1152鈥?.PubMed Central PubMed CrossRef
    130.Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 2013;72:1255鈥?.PubMed CrossRef
    131.Ren S, Johnson BG, Kida Y, Ip C, Davidson KC, Lin SL, et al. LRP-6 is a coreceptor for multiple fibrogenic signalling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci U S A. 2013;110:1440鈥?.PubMed Central PubMed CrossRef
    132.Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461:614鈥?0.PubMed CrossRef
    133.Wang C, Zhu H, Sun Z, Xiang Z, Ge Y, Ni C, et al. Inhibition of Wnt/-catenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycin-induced lung injury. Am J Physiol Cell Physiol. 2014;307:C234鈥?4.PubMed CrossRef
    134.Lau Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 2013;73:3132鈥?4.CrossRef
    135.Abu-Baker A, Laganiere J, Gaudet R, Rochefort D, Brais B, Neri C, et al. Lithium chloride attenuates cell death in oculopharyngeal muscular dystrophy by perturbing Wnt/-catenin pathway. Cell Death Dis. 2013;4:e821.PubMed Central PubMed CrossRef
    136.Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, et al. IFN-纬 suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity. 2006;24:563鈥?4.PubMed CrossRef
    137.Whittle BJ, Varga C, Posa A, Molnar A, Collin M, Thiemermann C. Reduction of experimental colitis in the rat by inhibitors of glycogen synthase kinase-3. Br J Pharmacol. 2006;147:575鈥?2.PubMed Central PubMed CrossRef
    138.de Bree E, Zoras O, Hunt JL, Takes RP, Su谩rez C, Mendenhall WM, et al. Desmoid tumors of the head and neck: A therapeutic challenge. Head Neck. 2014;36:1517鈥?6.PubMed
    139.Walczak BE, Rose PS. Desmoid: the role of local therapy in an era of systemic options. Curr Treat Options Oncol. 2013;3:465鈥?3.CrossRef
    140.Bonvalot S, Tern猫s N, Fiore M, Bitsakou G, Colombo C, Honor茅 C, et al. Spontaneous regression of primary abdominal wall desmoid tumors: more common than previously thought. Ann Surg Oncol. 2013;20:4096鈥?02.PubMed CrossRef
    141.Fiore M, Rimareix F, Mariani L, Domont J, Collini P, Le P茅choux C, et al. Desmoid-type fibromatosis: a front-line conservative approach to select patients for surgical treatment. Ann Surg Oncol. 2009;16:2587鈥?3.PubMed CrossRef
    142.Lev D, Kotilingam D, Wei C, Ballo MT, Zagars GK, Pisters PW, et al. Optimizing treatment of desmoid tumors. J Clin Oncol. 2007;25:1785鈥?1.PubMed CrossRef
    143.Ballo MT, Zagars GK, Pollack A, Pisters PW, Pollack RA. Desmoid tumor: prognostic factors and outcome after surgery, radiation therapy, or combined surgery and radiation therapy. J Clin Oncol. 1999;17:158鈥?7.PubMed
    144.Melis M, Zager JS, Sondak VK. Multimodality management of desmoid tumors: how important is a negative surgical margin? J Surg Oncol. 2008;98:594鈥?02.PubMed CrossRef
    145.Ballo MT, Zagars GK, Pollock RE, Benjamin RS, Feig BW, Cormier JN, et al. Retroperitoneal soft tissue sarcoma: an analysis of radiation and surgical treatment. Int J Radiat Oncol Biol Phys. 2007;67:158鈥?3.PubMed CrossRef
    146.Janinis J, Patriki M, Vini L, Aravantinos G, Whelan JS. The pharmacological treatment of aggressive fibromatosis: a systematic review. Ann Oncol. 2003;14:181鈥?0.PubMed CrossRef
    147.Leithner A, Schnack B, Katterschafka T, Wiltschke C, Amann G, Windhager R, et al. Treatment of extra-abdominal desmoid tumors with interferon-alpha with or without tretinoin. J Surg Oncol. 2000;73:21鈥?.PubMed CrossRef
    148.Poritz LS, Blackstein M, Berk T, Gallinger S, McLeod RS, Cohen Z. Extended follow-up of patients treated with cytotoxic chemotherapy for intra-abdominal desmoid tumors. Dis Colon Rectum. 2001;44:1268鈥?3.PubMed CrossRef
    149.Penel N, Le Cesne A, Bui BN, Perol D, Brain EG, Ray-Coquard I, et al. Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up. Ann Oncol. 2011;22:452鈥?.PubMed CrossRef
    150.Gounder MM, Lefkowitz RA, Keohan ML, D'Adamo DR, Hameed M, Antonescu CR, et al. Activity of Sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res. 2011;17:4082鈥?0.PubMed Central PubMed CrossRef
    151.Mace J, Sybil Biermann J, Sondak V, McGinn C, Hayes C, Thomas D, et al. Response of extraabdominal desmoid tumors to therapy with imatinib mesylate. Cancer. 2002;95:2373鈥?.PubMed CrossRef
    152.Stabellini G, Balducci C, Lilli C, Marinucci L, Becchetti E, Carinci F, et al. Toremifene decreases type I, type II and increases type III receptors in desmoid and fibroma and inhibits TGFbeta1 binding in desmoid fibroblasts. Biomed Pharmacother. 2008;62:436鈥?2.PubMed CrossRef
    153.Ghanbari-Azarnier R, Sato S, Wei Q, Al-Jazrawe M, Alman BA. Targeting stem cell behavior in desmoid tumors (aggressive fibromatosis) by inhibiting hedgehog signaling. Neoplasia. 2013;15:712鈥?.PubMed Central PubMed
    154.Issakov J, Merimsky O, Gutman M, Kollender Y, Lev-Chelouche D, Abu-Abid S, et al. Hyperthermic isolated limb perfusion with tumor necrosis factor-alpha and melphalan in advanced soft-tissue sarcomas: histopathological considerations. Ann Surg Oncol. 2000;7:155鈥?.PubMed CrossRef
    155.Drouet A, Le Moigne F, Have L, Blondet R, Jacquin O, Chauvin F. Common peroneal nerve palsy following TNF-based isolated limb perfusion for irresectable extremity desmoid tumor. Orthop Traumatol Surg Res. 2009;95:639鈥?4.PubMed CrossRef
    156.Bonvalot S, Rimareix F, Causeret S, Le P茅choux C, Boulet B, Terrier P, et al. Hyperthermic isolated limb perfusion in locally advanced soft tissue sarcoma and progressive desmoid-type fibromatosis with TNF 1聽mg and melphalan (T1-M HILP) is safe and efficient. Ann Surg Oncol. 2009;16:3350鈥?.PubMed CrossRef
  • 作者单位:Maria Vittoria Enzo (1)
    Marco Rastrelli (2)
    Carlo Riccardo Rossi (2) (3)
    Uros Hladnik (1)
    Daniela Segat (1)

    1. Genetics Unit, 鈥淢auro Baschirotto鈥?Institute for Rare Diseases, Via B. Bizio, 1- 36023, Vicenza, Italy
    2. Melanoma and Sarcoma Unit, Veneto Institute of Oncology, IOV-IRCSS, Via Gattamelata, 64-35128, Padua, Italy
    3. Department of Surgical Oncological and Gastroenterological Science, University of Padua, Via Giustiniani, 2- 35124, Padua, Italy
  • 刊物类别:Biomedicine general; Gene Therapy; Molecular Medicine;
  • 刊物主题:Biomedicine general; Gene Therapy; Molecular Medicine;
  • 出版者:BioMed Central
  • ISSN:2052-8426
文摘
The canonical Wnt signaling pathway is involved in a variety of biological processes like cell proliferation, cell polarity, and cell fate determination. This pathway has been extensively investigated as its deregulation is linked to different diseases, including various types of cancer, skeletal defects, birth defect disorders (including neural tube defects), metabolic diseases, neurodegenerative disorders and several fibrotic diseases like desmoid tumors. In the "on state", beta-catenin, the key effector of Wnt signaling, enters the nucleus where it binds to the members of the TCF-LEF family of transcription factors and exerts its effect on gene transcription. Disease development can be caused by direct or indirect alterations of the Wnt/-catenin signaling. In the first case germline or somatic mutations of the Wnt components are associated to several diseases such as the familial adenomatous polyposis (FAP) - caused by germline mutations of the tumor suppressor adenomatous polyposis coli gene (APC) - and the desmoid-like fibromatosis, a sporadic tumor associated with somatic mutations of the -catenin gene (CTNNB1). In the second case, epigenetic modifications and microenvironmental factors have been demonstrated to play a key role in Wnt pathway activation. The natural autocrine Wnt signaling acts through agonists and antagonists competing for the Wnt receptors. Anomalies in this regulation, whichever is their etiology, are an important part in the pathogenesis of Wnt pathway linked diseases. An example is promoter hypermethylation of Wnt antagonists, such as SFRPs, that causes gene silencing preventing their function and consequently leading to the activation of the Wnt pathway. Microenvironmental factors, such as the extracellular matrix, growth factors and inflammatory mediators, represent another type of indirect mechanism that influence Wnt pathway activation. A favorable microenvironment can lead to aberrant fibroblasts activation and accumulation of ECM proteins with subsequent tissue fibrosis that can evolve in fibrotic disease or tumor. Since the development and progression of several diseases is the outcome of the Wnt pathway cross-talk with other signaling pathways and inflammatory factors, it is important to consider not only direct inhibitors of the Wnt signaling pathway but also inhibitors of microenvironmental factors as promising therapeutic approaches for several tumors of fibrotic origin. Keywords Wnt pathway Adenomatous polyposis coli Beta-catenin Inflammatory factors Fibrosis Desmoid-like fibromatosis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700