Temporal Information of Directed Causal Connectivity in Multi-Trial ERP Data using Partial Granger Causality
详细信息    查看全文
  • 作者:Vahab Youssofzadeh ; Girijesh Prasad ; Muhammad Naeem ; KongFatt Wong-Lin
  • 关键词:Partial Granger causality (PGC) ; Event ; related potential (ERP) ; Conditional Granger causality (CGC) ; Mismatch negativity (MMN) ; Auditory oddball paradigm (AOP)
  • 刊名:Neuroinformatics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:14
  • 期:1
  • 页码:99-120
  • 全文大小:3,333 KB
  • 参考文献:Acunzo, D. J., Mackenzie, G., & van Rossum, M. C. W. (2012). Systematic biases in early ERP and ERF components as a result of high-pass filtering. Journal of Neuroscience Methods, 209, 212–8. doi:10.​1016/​j.​jneumeth.​2012.​06.​011 .PubMed CrossRef
    Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. doi:10.​1109/​tac.​1974.​1100705 .CrossRef
    Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing, 16, 38–51. doi:10.​1097/​00003446-199502000-00004 .PubMed CrossRef
    Ancona N, Marinazzo D, Stramaglia S (2004) Radial basis function approach to nonlinear Granger causality of time series. Phys Rev E, Stat nonlinear, soft matter Phys 70:56221. 10.​1103/​PhysRevE.​70.​056221
    Arnold, M., Miltner, W. H. R., Witte, H., et al. (1998). Adaptive AR modeling of nonstationary time series by means of kaiman filtering. IEEE Transactions on Biomedical Engineering, 45, 545–552. doi:10.​1109/​10.​668739 .CrossRef
    Astolfi, L., Cincotti, F., Mattia, D., et al. (2007). Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Human Brain Mapping, 28, 143–157. doi:10.​1002/​hbm.​20263 .PubMed CrossRef
    Babiloni, C., Ferri, R., Binetti, G., et al. (2009). Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiology of Aging, 30, 93–102. doi:10.​1016/​j.​neurobiolaging.​2007.​05.​007 .PubMed CrossRef
    Baccalá, L. A., & Sameshima, K. (2001a). Overcoming the limitations of correlation analysis for many simultaneously processed neural structures. Progress in Brain Research, 130, 33–47. doi:10.​1016/​S0079-6123(01)30004-3 .PubMed CrossRef
    Baccalá, L. A., & Sameshima, K. (2001b). Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics, 84, 463–474. doi:10.​1007/​PL00007990 .PubMed CrossRef
    Barnett, L., & Seth, A. K. (2011). Behaviour of Granger causality under filtering: theoretical invariance and practical application. Journal of Neuroscience Methods, 201, 404–19. doi:10.​1016/​j.​jneumeth.​2011.​08.​010 .PubMed CrossRef
    Barnett L, Barrett AB, Seth AK (2009) Granger causality and transfer entropy are equivalent for Gaussian variables. Phys Rev Lett. 10.​1103/​PhysRevLett.​103.​238701
    Barrett, A. B. A., Barnett, L., & Seth, A. A. K. (2010). Multivariate granger causality and generalized variance. Physical Review E, 81, 41907. doi:10.​1103/​PhysRevE.​81.​041907 .CrossRef
    Barrett, A. B., Murphy, M., Bruno, M. A., et al. (2012). Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PloS One, 7, e29072. doi:10.​1371/​journal.​pone.​0029072 .PubMed PubMedCentral CrossRef
    Bastos, A. M., Usrey, W. M., Adams, R. A., et al. (2012). Canonical microcircuits for predictive coding. Neuron, 76, 695–711. doi:10.​1016/​j.​neuron.​2012.​10.​038 .PubMed PubMedCentral CrossRef
    Bernasconi, C., & KoÈnig, P. (1999). On the directionality of cortical interactions studied by structural analysis of electrophysiological recordings. Biological Cybernetics, 210, 199–210. doi:10.​1007/​s004220050556 .CrossRef
    Blinowska, K. J. (2011). Review of the methods of determination of directed connectivity from multichannel data. Medical and Biological Engineering and Computing, 49, 521–9. doi:10.​1007/​s11517-011-0739-x .PubMed PubMedCentral CrossRef
    Bressler, S. S. L., & Seth, A. A. K. (2011). Wiener-granger causality: a well established methodology. NeuroImage, 58, 323–9. doi:10.​1016/​j.​neuroimage.​2010.​02.​059 .PubMed CrossRef
    Brovelli, A., Ding, M., Ledberg, A., et al. (2004). Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by granger causality. Proceedings of the National Academy of Sciences of the United States of America, 101, 9849–54. doi:10.​1073/​pnas.​0308538101 .PubMed PubMedCentral CrossRef
    Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences (Regul Ed), 4, 215–222. doi:10.​1016/​S1364-6613(00)01483-2 .CrossRef
    Cohen, M. X., van Gaal, S., & van Gaal, S. (2012). Dynamic interactions between large-scale brain networks predict behavioral adaptation after perceptual errors. Cerebral Cortex, 23, 1061–72. doi:10.​1093/​cercor/​bhs069 .PubMed PubMedCentral CrossRef
    Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. Journal Cognitive Neuroscience, 18, 766–780. doi:10.​1162/​jocn.​2006.​18.​5.​766 .CrossRef
    David, O., & Friston, K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage, 20, 1743–1755. doi:10.​1016/​j.​neuroimage.​2003.​07.​015 .PubMed CrossRef
    David, O., Cosmelli, D., & Friston, K. J. (2004). Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage, 21, 659–73. doi:10.​1016/​j.​neuroimage.​2003.​10.​006 .PubMed CrossRef
    David, O., Harrison, L., & Friston, K. J. (2005). Modelling event-related responses in the brain. NeuroImage, 25, 756–70. doi:10.​1016/​j.​neuroimage.​2004.​12.​030 .PubMed CrossRef
    David, O., Kiebel, S. J., Harrison, L. M., et al. (2006). Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage, 30, 1255–72. doi:10.​1016/​j.​neuroimage.​2005.​10.​045 .PubMed CrossRef
    David, O., Guillemain, I., Saillet, S., et al. (2008). Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biology, 6, 2683–97. doi:10.​1371/​journal.​pbio.​0060315 .PubMed CrossRef
    Dhamala, M., Rangarajan, G., & Ding, M. (2008). Analyzing information flow in brain networks with nonparametric granger causality. NeuroImage, 41, 354–362. doi:10.​1016/​j.​neuroimage.​2008.​02.​020 .PubMed PubMedCentral CrossRef
    Ding, M., Bressler, S. L., Yang, W., & Liang, H. (2000). Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biological Cybernetics, 83, 35–45. doi:10.​1007/​s004229900137 .PubMed CrossRef
    Ding, M., Chen, Y., & Bressler, S. S. L. (2006). Granger causality: basic theory and application to neuroscience. In B. Schelter, M. Winterhalder, & J. Timmer (Eds.), Handbook of time series analysis (pp. 437–460). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.CrossRef
    Douglas, R. J., & Martin, K. A. C. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27, 419–51. doi:10.​1146/​annurev.​neuro.​27.​070203.​144152 .PubMed CrossRef
    Durbin, J., & Watson, G. S. (1951). Testing for serial correlation in least squares regression II. Biometrika, 38, 159–178. doi:10.​2307/​2332325 .PubMed CrossRef
    Essl, M., & Rappelsberger, P. (1998). EEG coherence and reference signals: experimental results and mathematical explanations. Medical and Biological Engineering and Computing, 36, 399–406. doi:10.​1007/​BF02523206 .PubMed CrossRef
    Faes L, Nollo G (2010) Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions. Biological Cybernetics, 103, 387–400.
    Friston, K. J. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360, 815–36. doi:10.​1098/​rstb.​2005.​1622 .PubMed PubMedCentral CrossRef
    Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1, 13–36. doi:10.​1089/​brain.​2011.​0008 .PubMed CrossRef
    Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273–1302. doi:10.​1016/​S1053-8119(03)00202-7 .PubMed CrossRef
    Friston, K. J., Moran, R., & Seth, A. K. (2013). Analysing connectivity with granger causality and dynamic causal modelling. Current Opinion in Neurobiology, 23, 172–178. doi:10.​1016/​j.​conb.​2012.​11.​010 .PubMed PubMedCentral CrossRef
    Friston, K. J., Bastos, A. M., Oswal, A., et al. (2014). Granger causality revisited. NeuroImage, 101, 796–808. doi:10.​1016/​j.​neuroimage.​2014.​06.​062 .PubMed PubMedCentral CrossRef
    Gaillard, R., Dehaene, S., Adam, C., et al. (2009). Converging intracranial markers of conscious access. PLoS Biology, 7, e61. doi:10.​1371/​journal.​pbio.​1000061 .PubMed CrossRef
    Gao, J., Wong-Lin, K., Holmes, P., et al. (2009). Sequential effects in two-choice reaction time tasks: decomposition and synthesis of mechanisms. Neural Computation, 21, 2407–36. doi:10.​1162/​neco.​2009.​09-08-866 .PubMed PubMedCentral CrossRef
    Garrido, M. I., Kilner, J. M., Kiebel, S. J., et al. (2007a). Dynamic causal modelling of evoked potentials: a reproducibility study. NeuroImage, 36, 571–580. doi:10.​1016/​j.​neuroimage.​2007.​03.​014 .PubMed PubMedCentral CrossRef
    Garrido, M. I., Kilner, J. M., Kiebel, S. J., & Friston, K. J. (2007b). Evoked brain responses are generated by feedback loops. Proceedings of the National Academy of Sciences of the United States of America, 104, 20961–20966. doi:10.​1073/​pnas.​0706274105 .PubMed PubMedCentral CrossRef
    Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: a review of underlying mechanisms. Clinical Neurophysiology, 120, 453–63. doi:10.​1016/​j.​clinph.​2008.​11.​029 .PubMed PubMedCentral CrossRef
    Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77, 304. doi:10.​2307/​2287238 .CrossRef
    Geweke, J. F. (1984). Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79, 907–915. doi:10.​2307/​2288723 .CrossRef
    Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology, 27, 627–640. doi:10.​1111/​j.​1469-8986.​1990.​tb03184.​x .PubMed CrossRef
    Gómez-Herrero, G., Atienza, M., Egiazarian, K., & Cantero, J. L. (2008). Measuring directional coupling between EEG sources. NeuroImage, 43, 497–508. doi:10.​1016/​j.​neuroimage.​2008.​07.​032 .PubMed CrossRef
    Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Economics Journal Economics and Sociology, 37, 424–438. doi:10.​2307/​1912791 .
    Guo, S., Seth, A. K., Kendrick, K. M., et al. (2008a). Partial Granger causality--eliminating exogenous inputs and latent variables. Journal of Neuroscience Methods, 172, 79–93. doi:10.​1016/​j.​jneumeth.​2008.​04.​011 .PubMed CrossRef
    Guo, S., Wu, J., Ding, M., & Feng, J. (2008b). Uncovering interactions in the frequency domain. PLoS Computational Biology, 4, e1000087. doi:10.​1371/​journal.​pcbi.​1000087 .PubMed PubMedCentral CrossRef
    Guo S, Ladroue C, Feng J (2010) Granger causality: theory and applications. In: Feng J, Fu W, Sun F (eds) Frontiers in Computational and Systems Biology Computational Biology. Springer London, pp 83–111
    Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: minimum norm estimates. Medical and Biological Engineering and Computing, 32, 35–42. doi:10.​1007/​BF02512476 .PubMed CrossRef
    Haufe, S., Nikulin, V. V., Müller, K.-R., & Nolte, G. (2013). A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage, 64, 120–33. doi:10.​1016/​j.​neuroimage.​2012.​09.​036 .PubMed CrossRef
    Havlicek, M., Jan, J., Brazdil, M., & Calhoun, V. D. (2010). Dynamic granger causality based on kalman filter for evaluation of functional network connectivity in fMRI data. NeuroImage, 53, 65–77. doi:10.​1016/​j.​neuroimage.​2010.​05.​063 .PubMed PubMedCentral CrossRef
    Hesse, W., Möller, E., Arnold, M., & Schack, B. (2003). The use of time-variant EEG granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods, 124, 27–44. doi:10.​1016/​S0165-0270(02)00366-7 .PubMed CrossRef
    Hu, M., & Liang, H. (2014). A copula approach to assessing granger causality. NeuroImage, 100, 125–134. doi:10.​1016/​j.​neuroimage.​2014.​06.​013 .PubMed CrossRef
    Huettel, S. A., Mack, P. B., & McCarthy, G. (2002). Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex. Nature Neuroscience, 5, 485–490. doi:10.​1038/​nn841 .PubMed
    Jansen, B., & Rit, V. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73, 357–366. doi:10.​1007/​BF00199471 .PubMed CrossRef
    Kaiser, J., Lutzenberger, W., Preissl, H., et al. (2000). Right-hemisphere dominance for the processing of sound-source lateralization. The Journal of Neuroscience, 20, 6631–9.PubMed
    Kaminski M, Szerling P, Blinowska K (2010) Comparison of methods for estimation of time-varying transmission in multichannel data. Proceedings of the 10th IEEE International Conference on Information Technology and Applications in Biomedicine.
    Kiebel, S. J., David, O., & Friston, K. J. (2006). Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. NeuroImage, 30, 1273–84. doi:10.​1016/​j.​neuroimage.​2005.​12.​055 .PubMed CrossRef
    Kiebel, S. J., Daunizeau, J., Phillips, C., & Friston, K. J. (2008). Variational bayesian inversion of the equivalent current dipole model in EEG/MEG. NeuroImage, 39, 728–41. doi:10.​1016/​j.​neuroimage.​2007.​09.​005 .PubMed CrossRef
    Kortelainen, J., Silfverhuth, M. J., Hintsala, H., & Seppänen, T. (2012). Experimental comparison of connectivity measures with simulated EEG signals. Medical and Biological Engineering and Computing, 50, 683–688. doi:10.​1007/​s11517-012-0911-y .PubMed CrossRef
    Korzeniewska, A., Kasicki, S., Kamiński, M., & Blinowska, K. J. (1997). Information flow between hippocampus and related structures during various types of rat’s behavior. Journal of Neuroscience Methods, 73, 49–60. doi:10.​1016/​S0165-0270(96)02212-1 .PubMed CrossRef
    Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86. doi:10.​1214/​aoms/​1177729694 .CrossRef
    Kuś, R., Kamiński, M., & Blinowska, K. J. (2004). Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE Transactions on Biomedical Engineering, 51, 1501–1510. doi:10.​1109/​TBME.​2004.​827929 .PubMed CrossRef
    Litvak, V., Mattout, J., Kiebel, S., et al. (2011). EEG and MEG data analysis in SPM8. Computational Intelligence and Neuroscience, 2011, 852961–852993. doi:10.​1155/​2011/​852961 .PubMed PubMedCentral CrossRef
    Liu, Y., Keil, A., & Ding, M. (2012). Effects of emotional conditioning on early visual processing: temporal dynamics revealed by ERP single-trial analysis. Human Brain Mapping, 33, 909–919. doi:10.​1002/​hbm.​21259 .PubMed CrossRef
    Lopes da Silva, F., Pijn, J. P., Boeijinga, P., & da Silva, F. (1989). Interdependence of EEG signals: linear vs. nonlinear associations and the significance of time delays and phase shifts. Brain Topography, 2, 9–18. doi:10.​1007/​BF01128839 .PubMed CrossRef
    Luo, Q., Lu, W., Cheng, W., et al. (2013). Spatio-temporal granger causality: a new framework. NeuroImage, 79, 241–63. doi:10.​1016/​j.​neuroimage.​2013.​04.​091 .PubMed PubMedCentral CrossRef
    Machens, C. K., Romo, R., & Brody, C. D. (2005). Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science, 307, 1121–1124. doi:10.​1126/​science.​1104171 .PubMed CrossRef
    Mardia, K. V., Goodall, C., Redfern, E. J., & Alonso, F. J. (1998). The kriged kalman filter. Test, 7, 217–282. doi:10.​1007/​BF02565111 .CrossRef
    Marinazzo, D., Pellicoro, M., & Stramaglia, S. (2006). Nonlinear parametric model for granger causality of time series. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. doi:10.​1103/​PhysRevE.​73.​066216 .PubMed
    Marinazzo, D., Liao, W., Chen, H., & Stramaglia, S. (2011). Nonlinear connectivity by granger causality. NeuroImage, 58, 330–8. doi:10.​1016/​j.​neuroimage.​2010.​01.​099 .PubMed CrossRef
    Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi:10.​1146/​annurev.​neuro.​24.​1.​167 .PubMed CrossRef
    Möller, E., Schack, B., Arnold, M., & Witte, H. (2001). Instantaneous multivariate EEG coherence analysis by means of adaptive high-dimensional autoregressive models. Journal of Neuroscience Methods, 105, 143–158. doi:10.​1016/​S0165-0270(00)00350-2 .PubMed CrossRef
    Moran, R. J., Kiebel, S. J., Stephan, K. E., et al. (2007). A neural mass model of spectral responses in electrophysiology. NeuroImage, 37, 706–20. doi:10.​1016/​j.​neuroimage.​2007.​05.​032 .PubMed PubMedCentral CrossRef
    Moran, R. J., Symmonds, M., Stephan, K. E., et al. (2011). An in vivo assay of synaptic function mediating human cognition. Current Biology, 21, 1320–5. doi:10.​1016/​j.​cub.​2011.​06.​053 .PubMed PubMedCentral CrossRef
    Morf, M., Vieira, A., Lee, L. D., et al. (1978). Recursive multichannel maximum entropy spectral estimation. IEEE Transactions on Geoscience Electronics, 16, 85–94. doi:10.​1109/​TGE.​1978.​294569 .CrossRef
    Mosher, J. C., Leahy, R. M., & Lewis, P. S. (1999). EEG and MEG: forward solutions for inverse methods. IEEE Transactions on Biomedical Engineering, 46, 245–259. doi:10.​1109/​10.​748978 .PubMed CrossRef
    Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.PubMed
    Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. The Behavioral and Brain Sciences, 13, 201–233. doi:10.​1017/​S0140525X0007840​7 .CrossRef
    Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118, 2544–90. doi:10.​1016/​j.​clinph.​2007.​04.​026 .PubMed CrossRef
    Nedungadi, A. G., Rangarajan, G., Jain, N., & Ding, M. (2009). Analyzing multiple spike trains with nonparametric granger causality. Journal of Computational Neuroscience, 27, 55–64. doi:10.​1007/​s10827-008-0126-2 .PubMed CrossRef
    Netoff, T. I., Carroll, T. L., Pecora, L., & Schif, S. J. (2006). Detecting coupling in the presence of noise and nonlinearity. In B. Schelter, M. Winterhalder, & J. Timmer (Eds.), Handbook of time series analysis (pp. 265–282). KGaA: Wiley-VCH Verlag GmbH & Co.CrossRef
    Niyogi, R. K., & Wong-Lin, K. (2013). Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making. PLoS Computational Biology, 9, e1003099. doi:10.​1371/​journal.​pcbi.​1003099 .PubMed PubMedCentral CrossRef
    Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. International Journal of Psychophysiology, 88, 109–23. doi:10.​1016/​j.​ijpsycho.​2013.​03.​015 .PubMed CrossRef
    Paavilainen, P., Alho, K., Reinikainen, K., et al. (1991). Right hemisphere dominance of different mismatch negativities. Electroencephalography and Clinical Neurophysiology, 78, 466–479. doi:10.​1016/​0013-4694(91)90064-B .PubMed CrossRef
    Psaradakis, Z., Ravn, M. O., & Sola, M. (2005). Markov switching causality and the money-output relationship. Journal of Applied Ecology, 20, 665–683. doi:10.​1002/​jae.​819 .
    Quiroga, R. Q., Kreuz, T., & Grassberger, P. (2002). Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. doi:10.​1103/​PhysRevE.​66.​041904 .
    Reimann, M. W., Anastassiou, C. A., Perin, R., et al. (2013). A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron, 79, 375–90. doi:10.​1016/​j.​neuron.​2013.​05.​023 .PubMed PubMedCentral CrossRef
    Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 25, 230–242. doi:10.​1016/​j.​neuroimage.​2004.​11.​017 .PubMed CrossRef
    Roelstraete, B., & Rosseel, Y. (2012). Does partial granger causality really eliminate the influence of exogenous inputs and latent variables? Journal of Neuroscience Methods, 206, 73–7. doi:10.​1016/​j.​jneumeth.​2012.​01.​010 .PubMed CrossRef
    Sanei, S. (2013). Connectivity of brain regions. Adaptive processing of brain signals (pp. 178–209). Hoboken: Wiley.CrossRef
    Sato, J. R., Junior, E. A., Takahashi, D. Y., et al. (2006). A method to produce evolving functional connectivity maps during the course of an fMRI experiment using wavelet-based time-varying Granger causality. NeuroImage, 31, 187–96. doi:10.​1016/​j.​neuroimage.​2005.​11.​039 .PubMed CrossRef
    Schack, B., Rappelsberger, P., Weiss, S., & Möller, E. (1999). Adaptive phase estimation and its application in EEG analysis of word processing. Journal of Neuroscience Methods, 93, 49–59. doi:10.​1016/​S0165-0270(99)00117-X .PubMed CrossRef
    Schelter, B., Timmer, J., & Eichler, M. (2009). Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. Journal of Neuroscience Methods, 179, 121–30. doi:10.​1016/​j.​jneumeth.​2009.​01.​006 .PubMed CrossRef
    Schlögl, A., & Supp, G. (2006). Analyzing event-related EEG data with multivariate autoregressive parameters. Progress in Brain Research, 159, 135–147. doi:10.​1016/​S0079-6123(06)59009-0 .PubMed CrossRef
    Schoffelen, J.-M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30, 1857–1865. doi:10.​1002/​hbm.​20745 .PubMed CrossRef
    Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85, 461–4. doi:10.​1103/​PhysRevLett.​85.​461 .PubMed CrossRef
    Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. doi:10.​1214/​aos/​1176344136 .CrossRef
    Seth, A. K. (2010). A MATLAB toolbox for Granger causal connectivity analysis. Journal of Neuroscience Methods, 186, 262–73. doi:10.​1016/​j.​jneumeth.​2009.​11.​020 .PubMed CrossRef
    Seth, A. K., Chorley, P., & Barnett, L. C. (2013). Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling. NeuroImage, 65, 540–55. doi:10.​1016/​j.​neuroimage.​2012.​09.​049 .PubMed CrossRef
    Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., et al. (2011). Network modelling methods for FMRI. NeuroImage, 54, 875–91. doi:10.​1016/​j.​neuroimage.​2010.​08.​063 .PubMed CrossRef
    Sommerlade, L., Thiel, M., Platt, B., et al. (2014). Time-variant estimation of connectivity and Kalman’s filter. In K. Sameshima & L. Baccala (Eds.), Methods in brain connectivity inference through multivariate time series analysis (pp. 161–177). New York: CRC Press.CrossRef
    Stevens, M. C., Calhoun, V. D., & Kiehl, K. A. (2005). Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. NeuroImage, 26, 782–92. doi:10.​1016/​j.​neuroimage.​2005.​02.​044 .PubMed PubMedCentral CrossRef
    Thomson, A. M., & Bannister, A. P. (2003). Interlaminar connections in the neocortex. Cerebral Cortex, 13, 5–14. doi:10.​1093/​cercor/​13.​1.​5 .PubMed CrossRef
    Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372, 90–92. doi:10.​1038/​372090a0 .PubMed CrossRef
    Wacongne, C., Changeux, J.-P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. The Journal of Neuroscience, 32, 3665–78. doi:10.​1523/​JNEUROSCI.​5003-11.​2012 .PubMed CrossRef
    Wang, X., Chen, Y., & Ding, M. (2008). Estimating Granger causality after stimulus onset: a cautionary note. NeuroImage, 41, 767–776. doi:10.​1016/​j.​neuroimage.​2008.​03.​025.​Estimating .PubMed PubMedCentral CrossRef
    Weiss, T., Hesse, W., Ungureanu, M., et al. (2008). How do brain areas communicate during the processing of noxious stimuli? an analysis of laser-evoked event-related potentials using the granger causality index. Journal of Neurophysiology, 99, 2220–31. doi:10.​1152/​jn.​00912.​2007 .PubMed CrossRef
    Wiener, N. (1956). The theory of prediction (1st ed.). New York: McGraw-Hill.
    Winkler, I., & Czigler, I. (2012). Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. International Journal of Psychophysiology, 83, 132–43. doi:10.​1016/​j.​ijpsycho.​2011.​10.​001 .PubMed CrossRef
    Wong, K.-F., & Huk, A. C. (2008). Temporal dynamics underlying perceptual decision making: insights from the interplay between an attractor model and parietal neurophysiology. Frontiers in Neuroscience, 2, 245–54. doi:10.​3389/​neuro.​01.​028.​2008 .PubMed PubMedCentral CrossRef
    Wong, K.-F., & Wang, X.-J. (2006). A recurrent network mechanism of time integration in perceptual decisions. The Journal of Neuroscience, 26, 1314–28. doi:10.​1523/​JNEUROSCI.​3733-05.​2006 .PubMed CrossRef
    Xu, L., Stoica, P., Li, J., et al. (2009). ASEO : a method for the simultaneous estimation of brain activities. IEEE Transactions on Biomedical Engineering, 56, 111–121. doi:10.​1109/​TBME.​2008.​2008166 .PubMed CrossRef
    Youssofzadeh V, Prasad G, Naeem M, Wong-Lin K (2013) Partial Granger Causality Analysis for Brain Connectivity based on Event Related Potentials. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2013.
    Youssofzadeh V, Zanotto D, Stegall P, et al. (2014) Directed neural connectivity changes in robot-assisted gait training: A partial Granger causality analysis. IEEE Engineering in Medicine & Biology Society (EMBC’14). pp 7–10
    Youssofzadeh, V., Prasad, G., & Wong-Lin, K. (2015). On self-feedback connectivity in neural mass models applied to event-related potentials. NeuroImage, 108, 364–376. doi:10.​1016/​j.​neuroimage.​2014.​12.​067 .PubMed CrossRef
  • 作者单位:Vahab Youssofzadeh (1)
    Girijesh Prasad (1)
    Muhammad Naeem (2)
    KongFatt Wong-Lin (1)

    1. Intelligent Systems Research Centre, Ulster University, L’Derry, UK
    2. Institute of Digital Health, University of Warwick, Coventry, UK
  • 刊物主题:Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology;
  • 出版者:Springer US
  • ISSN:1559-0089
文摘
Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250–300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directed functional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modelling. Keywords Partial Granger causality (PGC) Event-related potential (ERP) Conditional Granger causality (CGC) Mismatch negativity (MMN) Auditory oddball paradigm (AOP)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700