Organisation and Tyrosine Hydroxylase and Calretinin Immunoreactivity in the Main Olfactory Bulb of Paca (Cuniculus paca): A Large Caviomorph Rodent
详细信息    查看全文
  • 作者:Tais Harumi de Castro Sasahara (1)
    Leonardo Martins Leal (1)
    Maria Grazia Spillantini (2)
    M谩rcia Rita Fernandes Machado (1)

    1. Departamento de Morfologia e Fisiologia Animal
    ; Universidade Estadual Paulista (UNESP) - Faculdade de Ci锚ncia Agr谩rias e Veterin谩rias ; Via de Acesso Prof. Paulo Donato Castellane s/n ; Jaboticabal ; SP ; 14884-900 ; Brazil
    2. Department of Clinical Neurosciences
    ; The Clifford Allbutt Building ; University of Cambridge ; Cambridge ; CB2 0QH ; UK
  • 关键词:Calcium ; binding protein ; Dopamine ; Immunohistochemistry ; Neuroanatomy ; Olfactory system ; Rodent
  • 刊名:Neurochemical Research
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:40
  • 期:4
  • 页码:740-746
  • 全文大小:1,233 KB
  • 参考文献:1. Kosaka, T, Kosaka, K (2011) 鈥淚nterneurons鈥?in the olfactory bulb revisited. Neurosci Res 69: pp. 93-99 CrossRef
    2. Kosaka, T, Kosaka, K, Heizmann, CW, Nagatsu, I, Wu, JY, Yanaihara, N, Hama, K (1987) An aspect of the organization of the GABAergic system in the rat main olfactory bulb: laminar distribution of immunohistochemically defined subpopulations of GABAergic neurons. Brain Res 411: pp. 373-378 CrossRef
    3. Hal谩sz, N, Shepherd, GM (1983) Neurochemistry of the vertebrate olfactory bulb. Neuroscience 10: pp. 579-619 CrossRef
    4. Hoogland, PV, Huisman, E (1999) Tyrosine hydroxylase immunoreactive structures in the aged human olfactory bulb and olfactory peduncle. J Chem Neuroanat 17: pp. 153-161 CrossRef
    5. Kratskin, IL, Belluzzi, O Anatomy and neurochemistry of the olfactory bulb. In: Doty, RL eds. (2003) Handbook of olfaction and gustation. Marcel Dekker, New York, pp. 235-276
    6. Ngwenya, A, Patzke, N, Ihunwo, AO, Manger, PR (2011) Organisation and chemical neuroanatomy of the African elephant (Loxodonta africana) olfactory bulb. Brain Struct Funct 216: pp. 403-416 CrossRef
    7. Kosaka, K, Toida, K, Margolis, FL, Kosaka, T (1997) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb: prominent differences in the intraglomerular dendritic arborization and their relationship to olfactory nerve terminals. Neuroscience 76: pp. 775-786 CrossRef
    8. Kosaka, K, Toida, K, Aika, Y, Kosaka, T (1998) How simple is the organization of the olfactory glomerulus?: the heterogeneity of so-called periglomerular cells. Neurosci Res. 30: pp. 101-110 CrossRef
    9. Liberia, T, Blasco-Ib谩帽ez, JM, N谩cher, J, Varea, E, Zwafink, V, Crespo, C (2012) Characterization of a population of tyrosine hydroxylase-containing interneurons in the external plexiform layer of the rat olfactory bulb. Neuroscience 217: pp. 140-153 CrossRef
    10. Toida, K, Kosaka, K, Aika, Y, Kosaka, T (2000) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb鈥攊v. Intraglomerular synapses of tyrosine hydroxylase immunoreactive neurons. Neuroscience 101: pp. 11-17 CrossRef
    11. Kosaka, K, Kosaka, T (2004) Organization of the main olfactory bulbs of some mammals: musk shrews, moles, hedgehogs, tree shrews, bats, mice, and rats. J Comp Neurol 472: pp. 1-12 CrossRef
    12. Kosaka, K, Kosaka, T (2005) Synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells. Anat Sci Int 80: pp. 80-90 CrossRef
    13. Liberia, T, Blasco-Ib谩帽ez, JM, N谩cher, J, Varea, E, Lanciego, JLC (2013) Two types of periglomerular cells in the olfactory bulb of the macaque monkey (Macaca fascicularis). Brain Struct Funct 218: pp. 873-887 CrossRef
    14. Davis, BJ, Macrides, F (1983) Tyrosine hydroxylase immunoreactive neurons and fibers in the olfactory system of the hamster. J Comp Neurol 214: pp. 427-440 CrossRef
    15. Brederode, JFM, Helliesen, MK, Hendrickson, AE (1991) Distribution of the calcium-binding proteins parvalbumin and calbindin-D28k in the sensorimotor cortex of the rat. Neuroscience 44: pp. 157-171 CrossRef
    16. Baimbridge, KG, Celio, MR, Rogers, JH (1992) Calcium-binding proteins in the central nervous system. Trends Neurosci 15: pp. 303-308 CrossRef
    17. Bri帽贸n, JG, Alonso, JR, Garc铆a-Ojeda, E, Crespo, C, Ar茅valo, R, Aij贸n, J (1997) Calretinin- and parvalbumin-immunoreactive neurons in the rat main olfactory bulb do not express NADPH-diaphorase activity. J Chem Neuroanat 13: pp. 253-264 CrossRef
    18. R茅sibois, A, Rogers, JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46: pp. 101-134 CrossRef
    19. Wouterlood, FG, H盲rtig, W (1995) Calretinin-immunoreactivity in mitral cells of the rat olfactory bulb. Brain Res 682: pp. 93-100 CrossRef
    20. Kakuta, S, Oda, S, Gotoh, Y, Kishi, K (2001) Calbindin-D28k and calretinin immunoreactive neurons in the olfactory bulb of the musk shrew, Suncus murinus. Dev Brain Res 129: pp. 11-25 CrossRef
    21. Eisenberg, JF, Redford, KH Order rodentia (rodents, roedores). In: Ibid, eds. (1999) Mammals of the neotropics: the central neotropics Ecuador, Peru, Bolivia, Brazil. University of Chicago Press, Chicago, pp. 356-517
    22. Pachaly, JR, Acco, A, Lange, RR, Nogueira, TMR, Nogueira, MF, Ciffoni, EMG Order rodentia (rodents). In: Fowler, ME, Cubas, ZS eds. (2001) Biology, medicine, and surgery of South American wild animals. Iowa State University Press, Iowa, pp. 225-237
    23. Murphy, WJ, Eizirik, E, Johnson, WE, Zhang, YP, Ryder, OA, O鈥橞rien, SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409: pp. 614-618 CrossRef
    24. Montgelard, C, Bentz, S, Tirard, C, Verneau, O, Catzeflis, FM (2002) Molecular systematics of sciurognathi (rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Mol Phylogenet Evol 22: pp. 220-233 CrossRef
    25. Santos, BF Modelo Animal. In: Andrade, A, Pinto, SC, Oliveira, RS eds. (2006) Animais de laborat贸rio: cria莽茫o e experimenta莽茫o. Fiocruz, Rio de Janeiro, pp. 23-24
    26. Matsutani, S, Senba, E, Tohyama, M (1989) Distribution of neuropeptidelike immunoreactivities in the guinea pig olfactory bulb. J Comp Neurol 280: pp. 577-586 CrossRef
    27. Smith, RL, Baker, H, Kolstad, K, Spencer, DD, Greer, CA (1991) Localization of tyrosine hydroxylase and olfactory marker protein immunoreactivities in the human and macaque olfactory bulb. Brain Res 548: pp. 140-148 CrossRef
    28. Parrish-Aungst, S, Shipley, MT, Erdelyi, F, Szabo, G, Puche, AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501: pp. 825-836 CrossRef
    29. Kosaka, K, Heizmann, CW, Kosaka, T (1994) Calcium-binding protein parvalbumin-immunoreactive neurons in the rat olfactory bulb. 1. Distribution and structural features in adult rat. Exp Brain Res 99: pp. 191-204 CrossRef
    30. Nakajima, T, Okamura, M, Ogawa, K, Taniguchi, K (1996) Immunohistochemical and enzyme histochemical characteristics of short axon cells in the olfactory bulb of the golden hamster. J Vet Med Sci 58: pp. 903-908 CrossRef
    31. Baker, H (1986) Species differences in the distribution of substance P and tyrosine hydroxylase immunoreactivity in the olfactory bulb. J Comp Neurol 252: pp. 206-226 CrossRef
    32. Pinching, AJ, Powell, TPS (1971) The neuron types of the glomerular layer of the olfactory bulb. J Cell Sci 9: pp. 305-345
    33. Toida, K, Kosaka, K, Heizmann, CW, Kosaka, T (1998) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb鈥擨II. Structural features of Calbindin D28聽K-immunoreactive neurons. J Comp Neurol 392: pp. 179-198 CrossRef
    34. Gheusi, G, Cremer, H, McLean, H, Chazal, G, Vincent, JD, Lledo, PM (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. PNAS 97: pp. 1823-1828 CrossRef
    35. Bagley, J, Rocca, G, Jimenez, DA, Urban, NN (2007) Adult neurogenesis and specific replacement of interneuron subtypes in the mouse main olfactory bulb. BMC Neurosci 8: pp. 92 CrossRef
    36. Lledo, PM, Saghatelyan, A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci 28: pp. 248-254 CrossRef
    37. Whitman, MC, Greer, CA (2009) Adult neurogenesis and the olfactory system. Prog Neurobiol 89: pp. 162-175 CrossRef
    38. Oboti, L, Peretto, P, Marchis, S, Fasolo, A (2011) From chemical neuroanatomy to an understanding of the olfactory system. Eur J Histochem 55: pp. 35 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
The majority of neuroanatomical and chemical studies of the olfactory bulb have been performed in small rodents, such as rats and mice. Thus, this study aimed to describe the organisation and the chemical neuroanatomy of the main olfactory bulb (MOB) in paca, a large rodent belonging to the Hystricomorpha suborder and Caviomorpha infraorder. For this purpose, histological and immunohistochemical procedures were used to characterise the tyrosine hydroxylase (TH) and calretinin (CR) neuronal populations and their distribution. The paca MOB has eight layers: the olfactory nerve layer (ONL), the glomerular layer (GL), the external plexiform layer (EPL; subdivided into the inner and outer sublayers), the mitral cell layer (MCL), the internal plexiform layer (IPL), the granule cell layer (GCL), the periventricular layer and the ependymal layer. TH-ir neurons were found mostly in the GL, and moderate numbers of TH-ir neurons were scattered in the EPL. Numerous varicose fibres were distributed in the IPL and in the GCL. CR-ir neurons concentrated in the GL, around the base of the olfactory glomeruli. Most of the CR-ir neurons were located in the MCL, IPL and GCL. Some of the granule cells had an apical dendrite with a growth cone. The CR immunoreactivity was also observed in the ONL with olfactory nerves strongly immunostained. This study has shown that the MOB organisation in paca is consistent with the description in other mammals. The characterisation and distribution of the population of TH and CR in the MOB is not exclusively to this species. This large rodent shares common patterns to other caviomorph rodent, as guinea pig, and to the myomorph rodents, as mice, rats and hamsters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700