Postnatal development of subterranean habits in tuco-tucos Ctenomys talarum (Rodentia, Caviomorpha, Ctenomyidae)
详细信息    查看全文
  • 作者:Alejandra Isabel Echeverría ; Laura Marina Biondi ; Federico Becerra…
  • 关键词:Postnatal ontogeny ; Scratch ; digging behaviour ; Subterranean rodents ; Tuco ; tucos
  • 刊名:Journal of Ethology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:34
  • 期:2
  • 页码:107-118
  • 全文大小:1,071 KB
  • 参考文献:Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Z Säugetierkunde 57:163–168
    Antinuchi CD, Zenuto RR, Luna F, Cutrera AP, Perisinotti P, Busch C (2007) Energy budget in subterranean rodents: insights from the tuco-tuco Ctenomys talarum (Rodentia: Ctenomyidae). In: Kelt DA, Lessa E, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, Berkeley, pp 111–140
    Bates D, Machler M, Bolker B (2011) lme4: linear mixed-effects models using s4 classes. http://​cran.​R-project.​org/​package=​lme4 . R package version 0.999375-42
    Bayers JA, Walker C (1995) Refining the motor training hypothesis for the evolution of play. Am Nat 146:25–40CrossRef
    Busch C, Malizia AI, Scaglia OA, Reig OA (1989) Spatial distribution and attributes of a population of Ctenomys talarum (Rodentia: Octodontidae). J Mammal 70:204–208CrossRef
    Camín SR, Madoery LA, Roig V (1995) The burrowing behaviour of Ctenomys mendocinus (Rodentia). Mammalia 59:9–17CrossRef
    Carter D, Mikic B, Padian K (1998) Epigenetic mechanical factors in the evolution of long bone epiphyses. Zool J Linnean Soc 123:163–178CrossRef
    Comparatore VM, Busch C, Cid MS (1995) Dietary preferences of two sympatric subterranean rodents population in Argentina. Rev Chil Hist Nat 68:197–206
    Crawley MJ (2007) The R Book. Wiley, ChichesterCrossRef
    Conour LA, Murray KA, Brown MJ (2006) Preparation of animals for research-issues to consider for rodents and rabbits. ILAR J 47(4):283–293CrossRef PubMed
    Cutrera AP, Antinuchi CD, Busch C (2003) Thermoregulatory development in pups of the subterranean rodent Ctenomys talarum. Physiol Behav 79:321–330CrossRef PubMed
    Cutrera AP, Antinuchi CD, Mora MS, Vassallo AI (2006) Home-range and activity patterns of the south american subterranean rodent Ctenomys talarum. J Mammal 87(6):1183–1191CrossRef
    del Valle JC, Lohfely MI, Comparatore VM, Cid MS, Busch C (2001) Feeding selectivity and food preference of Ctenomys talarum (tuco-tuco). Mamm Biol 66:165–173
    Ebensperger LA, Blumstein DT (2006) Sociality in New World hystricognath rodents is linked to predators and burrow digging. Behav Ecol 17:410–418CrossRef
    Echeverría AI (2011) Ontogenia del comportamiento en el roedor subterráaneo Ctenomys talarum (Rodentia: Ctenomyidae). PhD dissertation, Mar del Plata, Bs. As., University of Mar del Plata, Argentina
    Echeverría AI, Becerra F, Vassallo AI (2014) Postanatal ontogeny of limb proportions and functional indices in the subterranean rodent Ctenomys talarum (Rodentia, Ctenomyidae). J Morphol 275(8):902–913CrossRef PubMed
    Eilam D (1997) Postnatal development of body architecture and gait in several rodent species. J Exp Biol 200:1339–1350PubMed
    Eilam D, Adijes M, Vilensky J (1995) Uphill locomotion in mole rats: a possible advantage of backward locomotion. Physiol Behav 58(3):483–489CrossRef PubMed
    Ellison GTH (1995) Is nest building an important component of thermoregulatory behaviour in the pouched mouse (Saccostomus campestris). Physiol Behav 57:693–697CrossRef PubMed
    Fabre PH, Galewski T, Tilak M, Douzery EJP (2013) Diversification of South American spiny rats (Echimyidae): a multi-gene phylogenetic approach. Zool Scr 42:117–134CrossRef
    Fernández ME, Vassallo AI, Zárate M (2000) Functional morphology and paleobiology of the Pliocene rodent Actenomys (Caviomorpha: Octodontidae): the evolution to a subterranean mode of life. Biol J Linn Soc 71:71–90CrossRef
    Fleming TH, Brown GJ (1975) An experimental analysis of seed hoarding and burrowing behaviour in two species of Costa Rican heteromyid rodents. J Mammal 56:301–315CrossRef
    Giannoni SM, Borghi CE, Roig VG (1996) The burrowing behavior of Ctenomys eremophilus (Rodentia, Ctenomyidae) in relation with substrate hardness. Mastoz Neotr 3(2):161–170
    Herring SW, Lakars TC (1981) Craniofacial development in the absence of muscle contraction. J Cran Genet Dev Biol 1:341–357
    Herring SW, Teng S (2000) Strain in the braincase and its sutures during function. Am J Phys Anthropol 112:575–593CrossRef PubMed PubMedCentral
    Heth G (1989) Burrow patterns of the mole rat Nannospalax ehrenbergi in two soil types (terra rossa and rendzina) in Mount Carmel. Israel J Zool 7:39–56
    Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap, Cambridge, pp 89–109CrossRef
    Hickman GC (1985) Surface-mound formation by the tuco-tuco, Ctenomys fulvus (Rodentia: Ctenomyidae), with comments on earth-pushing in other fossorial mammals. J Zool Lond 205:385–390CrossRef
    Kinlaw A (1999) A review of burrowing by semi-fossorial vertebrates in arid environments. J Arid Environ 41:127–145CrossRef
    Kirkton SD, Harrison JF (2006) Ontogeny of locomotory behaviour in the American locust, Schistocerca americana: from marathoner to broad jumper. Anim Behav 71:925–931CrossRef
    Lessa EP, Vassallo AI, Verzi DH, Mora MS (2008) Evolution of morphological adaptations for digging in living and extinct ctenomyid and octodontid rodents. Biol J Linn Soc 95:267–283CrossRef
    Lacey E, Patton JL, Cameron GN (2000) Life Underground: The Biology of Subterranean Rodents. Chicago Uni- versity Press, Chicago, p 449p
    Luna F, Antinuchi CD, Busch C (2002) Digging energetics in the South American rodent Ctenomys talarum (Rodentia, Ctenomyidae). Can J Zool 80:2144–2149CrossRef
    Malizia AI, Busch C (1991) Reproductive parameters and growth in the fossorial rodent Ctenomys talarum (Rodentia: Octodontidae). Mammalia 55:293–305CrossRef
    Mares MA, Ojeda RA (1982) Patterns of diversity and adaptation in South American hystricognath rodents. In: Mares MA, Genoways HH (eds) Mammalian Biology in South America. Special Publication Series, Pymatuning Laboratory of Ecology, University of Pittsburgh, Pittsburgh, pp 393–432
    Mora MS, Olivares AI, Vassallo AI (2003) Size, shape and structural versatily of the skull of the subterranean rodent Ctenomys: functional morphological analysis. Biol J Linn Soc 78:85–96CrossRef
    Morgan CC (2009) Geometric morphometrics of the scapula of South American caviomorph rodents (Rodentia: Hystricognathi): form, function and phylogeny. Mamm Biol 74:497–506
    Morgan CC, Verzi DH (2006) Morphological diversity of the humerus of the South American subterranean rodent Ctenomys (Rodentia, Ctenomyidae). J Mammal 87:1252–1260CrossRef
    Muir GD (2000) Early ontogeny of locomotor behaviour: a comparison between altricial and precocial animals. Brain Res Bull 53(5):719–726CrossRef PubMed
    Nevo E (1999) Mosaic Evolution of Subterranean Mammals. Oxford UP, Oxford
    Nowlan NC, Prendergast PJ (2005) Evolution of mechanoregulation of bone growth will lead to non-optimal bone phenotypes. J Theor Biol 235:408–418CrossRef PubMed
    Parada A, D’Elía G, Bidau CJ, Lessa EP (2011) Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae). J Mammal 92:671–682CrossRef
    Pearson OP (1959) Biology of the subterranean rodents, Ctenomys in Perú. Mem Mus Hist Nat Javier Prado 9:1–55
    Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, BerlinCrossRef
    Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Development Core Team (2011) nlme: linear and nonlinear mixed effects models. R package version 3.1-102
    R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://​www.​R-project.​org
    Reig OA, Busch C, Ortells MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Alan R. Liss, New York, pp 71–96
    Stamps J (2003) Behavioural processes affecting development: Tinbergen’s fourth question comes of age. Anim Behav 66:1–13CrossRef
    Trillmich F, Bieneck M, Geissler E, Bischof H-J (2003) Ontogeny of running performance in the wild guinea pig (Cavia aperea). Mamm Biol 68(4):214–223
    Tuli JS, Smith JA, Morton DB (1995) Stress measurements in mice after transportation. Lab Anim 29:132–138CrossRef PubMed
    Vassallo AI (1998) Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Caviomorpha: Octodontidae). J Zool 244:415–427CrossRef
    Vassallo AI (2006) Acquisition of subterranean habits in tuco-tucos (Rodentia, Caviomorpha, Ctenomys): role of social transmission. J Mammal 87(5):939–943CrossRef
    Vassallo AI, Antenucci CD (2015) Biology of caviomorph rodents: diversity and evolution. Sociedad Argentina para el Estudio de los Mamíferos (SAREM), Mendoza, p 338. ISBN 978-987-98497-3-6
    Verzi DH (2008) Phylogeny and adaptive diversity of rodents of the family Ctenomyidae (Caviomorpha): delimiting lineages and genera in the fossil record. J Zool 274(4):386–394CrossRef
    Vleck D (1979) The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zool 52:122–135CrossRef
    Whitford WG, Kay RF (1999) Bioperturbation by mammals in deserts: a review. J Arid Environ 41:203–230CrossRef
    Wiedenmayer C (1997) Stereotypies resulting from a deviation in the ontogenetic development of gerbils. Behav Proc 39(3):215–221CrossRef
    Young NM, Hallgrímsson B, Garland T Jr (2009) Epigenetic effects on integration of limb lengths in a mouse model: selective breeding for high voluntary locomotor activity. Evol Biol 36:88–99CrossRef
    Zelová J, Šumbera R, Okrouhlík J, Burda H (2010) Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiol Behav 99(1):54–58CrossRef PubMed
    Zenuto RR, Antinuchi CD, Busch C (2002a) Bioenergetics of reproduction and pup development in a subterranean rodent (Ctenomys talarum). Physiol Biochem Zool 75:469–478CrossRef PubMed
    Zenuto RR, Vassallo AI, Busch C (2002b) Comportamiento social y reproductivo del roedor subterráneo solitario Ctenomys talarum (Rodentia: Ctenomyidae) en condiciones de semicautiverio. Rev Chil Hist Nat 75:165–177CrossRef
  • 作者单位:Alejandra Isabel Echeverría (1)
    Laura Marina Biondi (1) (2)
    Federico Becerra (1) (3)
    Aldo Iván Vassallo (1)

    1. Grupo Morfología Funcional y Comportamiento, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Deán Funes 3250, 2do. Piso, 7600, Mar del Plata, Argentina
    2. Grupo Vertebrados, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Deán Funes 3250, 3er. piso, 7600, Mar del Plata, Argentina
    3. Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Zoology
    Behavioural Sciences
    Animal Ecology
    Evolutionary Biology
    Neurosciences
  • 出版者:Springer Japan
  • ISSN:1439-5444
文摘
Postnatal development of subterranean habits was investigated in Los Talas’ tuco-tuco Ctenomys talarum, a subterranean caviomorph rodent endemic from South America. Since in this species, some key morpho-functional traits related to scratch-digging behaviour—a form of underground progression—are already present during early ontogeny and develop progressively, we predicted that this behaviour expresses early during postanatal development and its performance enhances gradually from pups to adults. The process of acquisition of different behaviours associated to the construction of a burrow system was recorded in 11 individuals, each one coming from different litters, inside a terrarium filled with natural soil. We found that scratch-digging and burrowing behaviours expressed early during postnatal development, particularly, during lactancy. The digging of a “true burrow” clearly preceded the dispersal age, with a high inter-individual variability, from 18 (lactancy) to 47 (post-weaning) postnatal days. Pups could lose the soil using their foreclaws and remove the accumulated substrate using their hindfeet as adults do. During lactancy individuals could construct a simple burrow to shelter, and first burrow construction occurred in the absence of either a burrowing demonstrator or an early subterranean environment (a natal burrow). However, certain features of the complex burrow system that characterize this species, such as lateral branches and nest chamber, just appeared after weaning. The time elapsed until animals started to dig and the time dedicated to underground activities varied with age, decreasing and increasing, respectively. In sum, our results show that—in C. talarum—immature digging behaviour gets expressed early during ontogeny, and develops progressively. The role of the early ability to build its own burrow and its possible function influencing the development of musculoskeletal traits and on efficiency for such conduct is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700