Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model
详细信息    查看全文
  • 作者:TieZhi Sun ; XiangFu Ma ; YingJie Wei ; Cong Wang
  • 关键词:extended transport ; based cavitation model ; liquid nitrogen ; thermodynamic effects ; cavitating flows
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:337-346
  • 全文大小:1,224 KB
  • 参考文献:1.Ohira K, Nakayama T, Nagai T. Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, 2012, 52: 35–44CrossRef
    2.Joseph D D. Cavitation in a flowing liquid. Phys Rev E, 1995, 51: R1649CrossRef
    3.Deshpande M, Feng J, Merkle C L. Numerical modeling of the thermodynamic effects of cavitation. J Fluids Eng, 1997, 119: 420–427CrossRef
    4.Zhu J, Chen Y, Zhao D, et al. Extension of the Schnerr-Sauer model for cryogenic cavitation. Eur J Mech B-Fluid, 2015, 52: 1–10CrossRef MathSciNet
    5.Watanabe S, Hidaka T, Horiguchi H, et al. Analysis of thermodynamic effects on cavitation instabilities. J Fluids Eng, 2007, 129: 1123–1130CrossRef
    6.Goncalvès E, Patella R F. Numerical study of cavitating flows with thermodynamic effects. Comput Fluids, 2010, 39: 99–113CrossRef MathSciNet
    7.Reference Fluid Thermodynamic and Transport Properties-REFPROP. Version 7.0. Maryland (MD): NIST Standard Reference Database 23. 2002
    8.Callenaere M, Franc J P, Michel J, et al. The cavitation instability induced by the development of a re-entrant jet. J Fluid Mech, 2001, 444: 223–256CrossRef
    9.Saito Y, Takami R, Nakamori I, et al. Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil. Comput Mech, 2007, 40: 85–96CrossRef
    10.Ji B, Luo X, Wu Y, et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil. Int J Multiphase Flow, 2012, 51: 33–43CrossRef
    11.Ducoin A, Young Y L. Hydroelastic response and stability of a hydrofoil in viscous flow. J Fluids Struct, 2013, 38: 40–57CrossRef
    12.Stahl H A, Stepanoff A J. Thermodynamic aspects of cavitation in centrifugal pumps. Trans ASME, 1956, 78: 1691–1693
    13.Sarosdy L R, Acosta A J. Note on observations of cavitation in different fluids. Trans ASME, 1961, 83: 399–400CrossRef
    14.Hord J, Anderson L M, Hall W J. Cavitation in liquid cryogens I-Venturi. Technical Report, NASA CR-2045. 1972
    15.Hord J. Cavitation in Liquid Cryogens II — Hydrofoil. Technical Report, NASA CR-2156. 1973
    16.Hord J. Cavitation in Liquid Cryogens III — Ogives. Technical Report, NASA CR-2242. 1973
    17.Franc J P, Janson E, Morel P, et al. Visualizations of leading edge cavitation in an inducer at different temperatures. CAV2001, 2001, B7.002. http://​resolver.​caltech.​edu/​cav2001:sessionB7.002
    18.Yuka I, Naoya O, Yoshiki Y, et al. Numerical invetigation of thermodynamic effects on unsteady cavitation in cascade. In: Ceccio S L, Katz J, Chahine G, eds. Proceedings of the 7th International Symposium on Cavitation, Ann Arbor, USA, 2009. 78
    19.Chen Y, Heister S D. A numerical treatment for attached cavitation. J. Fluids Eng, 1994, 116: 613–618CrossRef
    20.Edwards J R, Franklin R K, Liou M S. Low-diffusion flux-splitting methods for real fluid flows with phase transitions. AIAA J, 2000, 38: 1624–1633CrossRef
    21.Wang G, Ostoja-Starzewski M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Appl Math Model, 2007, 31: 417–447CrossRef
    22.Huang D, Zhuang Y, Cai R. A computational method for cavitational flows based on energy conservation. In: Chew J W, ed. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, UK, 2007, 221: 1333–1338
    23.Singhal A K, Athavale M M, Li H Y, et al., Mathematical basis and validation of the full cavitation model. J Fluids Eng, 2002, 124: 617–624CrossRef
    24.Merkle C L, Feng J, Buelow P E O. Computational modeling of the dynamics of sheet cavitation. In: Michel J M. Proceedings of 3rd In ternational Symposium on Cavitation, Grenoble, France. 1998. 307–311
    25.Kunz R F, Boger D A, Stinebring D R, et al, A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids, 2000, 29: 849–875CrossRef
    26.Zwart P J, Gerber A G, Belamri T. A two-phase flow model for predicting cavitation dynamics. In: Fifth International Conference on Multiphase Flow, Yokohama, Japan, 2004. 152
    27.Hosangadi A, Ahuja V. Numerical study of cavitation in cryogenic fluids. J Fluids Eng, 2005, 127: 267–281CrossRef
    28.Utturkar Y, Wu J, Wang G, et al. Recent progress in modeling of cryogenic cavitation for liquid rocket propulsion. Prog Aerosp Sci, 2005, 41: 558–608CrossRef
    29.Wei Y J, Tseng C C, Wang G Y. Turbulence and cavitation models for time-dependent turbulent cavitating flows. Acta Mech Sin, 2011, 27: 473–487CrossRef
    30.Huang B, Wu Q, Wang G. Numerical investigation of cavitating flow in liquid hydrogen. Int J Hydrogen Energ, 2014, 39: 1698–1709CrossRef
    31.Zhang X, Wu, Z, Xiang S, et al. Modeling cavitation flow of cryogenic fluids with thermodynamic phase-change theory. Chin Sci Bull, 2013, 58: 567–574CrossRef
    32.Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy-viscosity model for high reynolds number turbulent flows-model development and validation. Comput Fluids, 1995, 24: 227–238CrossRef
    33.Reynolds W C. Fundamentals of turbulence for turbulence modeling and simulation. Technical Report, Belgium: The von Karman Institute for Fluild Dynamics, 1987
    34.Goel T, Thakur S, Haftka R T, et al. Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation. Int J Numer Meth Eng, 2008, 58: 969–1007CrossRef
    35.Senocak I, Shyy W. Interfacial dynamics-based modeling of turbulent cavitating flows. Part-1: Model development and steady-state computations, Int J Numer Methods Fluids, 2004, 44: 975–995CrossRef
    36.Brennen C E. Cavitation and Bubble Dynamics. Oxford: Oxford University Press, 2013CrossRef
    37.Plesset M S, Zwick S A. A nonsteady heat diffusion problem with spherical symmetry. J Appl Phys, 1952, 23: 95–98CrossRef MathSciNet
    38.Zhang Y, Luo X W, Liu S H, et al. A thermodynamic cavitation model for cavitating flow simulation in a wide range of water temperatures. Chin Phys Lett, 2010, 27: 016401CrossRef
  • 作者单位:TieZhi Sun (1)
    XiangFu Ma (2)
    YingJie Wei (1)
    Cong Wang (1)

    1. School of Astronautics, Harbin Institute of Technology, Harbin, 150001, China
    2. Beijing Institute of Machinery Equipment, Beijing, 100854, China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
Developing a robust computational strategy to address the rich physical characteristic involved in the thermodynamic effects on the cryogenic cavitation remains a challenge in research. The objective of the present study is to focus on developing modelling strategy to simulate cavitating flows in liquid nitrogen. For this purpose, numerical simulation over a 2D quarter caliber hydrofoil is investigated by calibrating cavitation model parameters and implementing the thermodynamic effects to the Zwart cavitation model. Experimental measurements of pressure and temperature are utilized to validate the extensional Zwart cavitation model. The results show that the cavitation dynamics characteristic under the cryogenic environment are different from that under the isothermal conditions: the cryogenic case yields a substantially shorter cavity around the hydrofoil, and the predicted pressure and temperature inside the cavity are steeper under the cryogenic conditions. Compared with the experimental data, the computational predictions with the modified evaporation and condensation parameters display better results than the default parameters from the room temperature liquids. Based on a wide range of computations and comparisons, the extensional Zwart cavitation model may predict more accurately the quasi-steady cavitation over a hydrofoil in liquid nitrogen by primarily altering the evaporation rate near the leading edge and the condensation rate in the cavity closure region. Keywords extended transport-based cavitation model liquid nitrogen thermodynamic effects cavitating flows

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700