Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists
详细信息    查看全文
  • 作者:Ana-Luisa Silva (44)
    Sarah N Dawson (45) (46)
    Mark J Arends (44) (47)
    Kiran Guttula (44)
    Nigel Hall (48)
    Ewen A Cameron (49)
    Tim H-M Huang (50)
    James D Brenton (46)
    Simon Tavar茅 (46)
    Mariann Bienz (51)
    Ashraf EK Ibrahim (44) (51)

    44. Department of Pathology
    ; Division of Molecular Histopathology ; University of Cambridge ; Addenbrooke鈥檚 Hospital ; Hills Road ; Cambridge ; CB2 2QQ ; UK
    45. Cambridge Clinical Trials Unit
    ; Cambridge University Hospitals NHS Foundation Trust ; Hills Road ; Cambridge ; CB2 0QQ ; UK
    46. Cancer Research UK Cambridge Institute
    ; Li Ka Shing Centre ; Robinson Way ; Cambridge ; CB2 0RE ; UK
    47. University of Edinburgh Division of Pathology
    ; Edinburgh Cancer Research Centre ; Institute of Genetics & Molecular Medicine ; Western General Hospital ; Crewe Road South ; Edinburgh ; EH4 2XR ; UK
    48. Cambridge Colorectal Unit
    ; Department of Surgery ; Addenbrooke鈥檚 Hospital ; Box 201 ; Hills Road ; Cambridge ; CB2 2QQ ; UK
    49. Gastroenterology
    ; Addenbrooke鈥檚 Hospital ; Hills Road ; Cambridge ; CB2 2QQ ; UK
    50. University of Texas Health Science Center
    ; 7979 Wurzbach Road ; San Antonio ; Texas ; 78229-3900 ; USA
    51. MRC
    ; Laboratory of Molecular Biology ; Hills Road ; Cambridge ; CB2 0QH ; UK
  • 刊名:BMC Cancer
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,655 KB
  • 参考文献:1. Cancer Research UK, Bowel cancer mortality statistics [http://ww.cancerresearchuk.org/cancer-info/cancerstats/types/bowel/http://www.cancerresearchuk.org/cancer-info/cancerstats/types/bowel/mortality/#By]
    2. Vogelstein, B, Fearon, ER, Hamilton, SR, Kern, SE, Preisinger, AC, Leppert, M, Nakamura, Y, White, R, Smits, AM, Bos, JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319: pp. 525-532 CrossRef
    3. Jones, PA, Laird, PW (1999) Cancer epigenetics comes of age. Nat Genet 21: pp. 163-167 CrossRef
    4. Beggs, AD, Jones, A, El-Bahrawy, M, Abulafi, M, Hodgson, SV, Tomlinson, IP (2013) Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol 229: pp. 697-704 CrossRef
    5. Morin, PJ, Sparks, AB, Korinek, V, Barker, N, Clevers, H, Vogelstein, B, Kinzler, KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: pp. 1787-1790 CrossRef
    6. Ilyas, M, Tomlinson, IP, Rowan, A, Pignatelli, M, Bodmer, WF (1997) Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 94: pp. 10330-10334 CrossRef
    7. Bienz, M, Clevers, H (2000) Linking colorectal cancer to Wnt signaling. Cell 103: pp. 311-320 CrossRef
    8. van de Wetering, M, Sancho, E, Verweij, C, de Lau, W, Oving, I, Hurlstone, A, van der Horn, K, Batlle, E, Coudreuse, D, Haramis, AP, Tjon-Pon-Fong, M, Moerer, P, van den Born, M, Soete, G, Pals, S, Eilers, M, Medema, R, Clevers, H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: pp. 241-250 CrossRef
    9. Sansom, OJ, Meniel, VS, Muncan, V, Phesse, TJ, Wilkins, JA, Reed, KR, Vass, JK, Athineos, D, Clevers, H, Clarke, AR (2007) Myc deletion rescues Apc deficiency in the small intestine. Nature 446: pp. 676-679 CrossRef
    10. Scholer-Dahirel, A, Schlabach, MR, Loo, A, Bagdasarian, L, Meyer, R, Guo, R, Woolfenden, S, Yu, KK, Markovits, J, Killary, K, Sonkin, D, Yao, YM, Warmuth, M, Sellers, WR, Schlegel, R, Stegmeier, F, Mosher, RE, McLaughlin, ME (2011) Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108: pp. 17135-17140 CrossRef
    11. Metcalfe, C, Ibrahim, AE, Graeb, M, de la Roche, M, Schwarz-Romond, T, Fiedler, M, Winton, DJ, Corfield, A, Bienz, M (2010) Dvl2 promotes intestinal length and Neoplasia in the ApcMin mouse model for colorectal cancer. Cancer Res 70: pp. 6629-6638 CrossRef
    12. Suzuki, H, Watkins, DN, Jair, KW, Schuebel, KE, Markowitz, SD, Chen, WD, Pretlow, TP, Yang, B, Akiyama, Y, Van Engeland, M, Toyota, M, Tokino, T, Hinoda, Y, Imai, K, Herman, JG, Baylin, SB (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: pp. 417-422 CrossRef
    13. Qi, J, Zhu, YQ, Luo, J, Tao, WH (2006) Hypermethylation and expression regulation of secreted frizzled-related protein genes in colorectal tumor. World J Gastroenterol 12: pp. 7113-7117
    14. Ibrahim, AE, Arends, MJ, Silva, AL, Wyllie, AH, Greger, L, Ito, Y, Vowler, SL, Huang, TH, Tavare, S, Murrell, A, Brenton, JD (2011) Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression. Gut 60: pp. 499-508 CrossRef
    15. Rawson, JB, Manno, M, Mrkonjic, M, Daftary, D, Dicks, E, Buchanan, DD, Younghusband, HB, Parfrey, PS, Young, JP, Pollett, A, Green, RC, Gallinger, S, McLaughlin, JR, Knight, JA, Bapat, B (2011) Promoter methylation of Wnt antagonists DKK1 and SFRP1 is associated with opposing tumor subtypes in two large populations of colorectal cancer patients. Carcinogenesis 32: pp. 741-747 CrossRef
    16. Taniguchi, H, Yamamoto, H, Hirata, T, Miyamoto, N, Oki, M, Nosho, K, Adachi, Y, Endo, T, Imai, K, Shinomura, Y (2005) Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24: pp. 7946-7952 CrossRef
    17. Voorham, QJ, Janssen, J, Tijssen, M, Snellenberg, S, Mongera, S, van Grieken, NC, Grabsch, H, Kliment, M, Rembacken, BJ, Mulder, CJ, van Engeland, M, Meijer, GA, Steenbergen, RD, Carvalho, B (2013) Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas. BMC Cancer 13: pp. 603 CrossRef
    18. Veeck, J, Dahl, E (1825) Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3. Biochim Biophys Acta 2012: pp. 18-28
    19. Sato, H, Suzuki, H, Toyota, M, Nojima, M, Maruyama, R, Sasaki, S, Takagi, H, Sogabe, Y, Sasaki, Y, Idogawa, M, Sonoda, T, Mori, M, Imai, K, Tokino, T, Shinomura, Y (2007) Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 28: pp. 2459-2466 CrossRef
    20. Jiang, X, Tan, J, Li, J, Kivimae, S, Yang, X, Zhuang, L, Lee, PL, Chan, MT, Stanton, LW, Liu, ET, Cheyette, BN, Yu, Q (2008) DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13: pp. 529-541 CrossRef
    21. Esteller, M, Sparks, A, Toyota, M, Sanchez-Cespedes, M, Capella, G, Peinado, MA, Gonzalez, S, Tarafa, G, Sidransky, D, Meltzer, SJ, Baylin, SB, Herman, JG (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60: pp. 4366-4371
    22. Koinuma, K, Yamashita, Y, Liu, W, Hatanaka, H, Kurashina, K, Wada, T, Takada, S, Kaneda, R, Choi, YL, Fujiwara, SI, Miyakura, Y, Nagai, H, Mano, H (2006) Epigenetic silencing of AXIN2 in colorectal carcinoma with microsatellite instability. Oncogene 25: pp. 139-146
    23. Kamiyama, H, Noda, H, Takata, O, Suzuki, K, Kawamura, Y, Konishi, F (2009) Promoter hypermethylation of tumor-related genes in peritoneal lavage and the prognosis of patients with colorectal cancer. J Surg Oncol 100: pp. 69-74 CrossRef
    24. Zhang, W, Glockner, SC, Guo, M, Machida, EO, Wang, DH, Easwaran, H, Van Neste, L, Herman, JG, Schuebel, KE, Watkins, DN, Ahuja, N, Baylin, SB (2008) Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res 68: pp. 2764-2772 CrossRef
    25. Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: pp. e45 CrossRef
    26. Ito, Y, Koessler, T, Ibrahim, AE, Rai, S, Vowler, SL, Abu-Amero, S, Silva, AL, Maia, AT, Huddleston, JE, Uribe-Lewis, S, Woodfine, K, Jagodic, M, Nativio, R, Dunning, A, Moore, G, Klenova, E, Bingham, S, Pharoah, PD, Brenton, JD, Beck, S, Sandhu, MS, Murrell, A (2008) Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum Mol Genet 17: pp. 2633-2643 CrossRef
    27. Suraweera, N, Robinson, J, Volikos, E, Guenther, T, Talbot, I, Tomlinson, I, Silver, A (2006) Mutations within Wnt pathway genes in sporadic colorectal cancers and cell lines. Int J Cancer 119: pp. 1837-1842 CrossRef
    28. Cejas, P, Lopez-Gomez, M, Aguayo, C, Madero, R, de Castro, CJ, Belda-Iniesta, C, Barriuso, J, Moreno Garcia, V, Larrauri, J, Lopez, R, Casado, E, Gonzalez-Baron, M, Feliu, J (2009) KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS ONE 4: pp. e8199 CrossRef
    29. Genolini, C, Falissard, B (2011) KmL: a package to cluster longitudinal data. Comput Methods Programs Biomed 104: pp. e112-e121 CrossRef
    R Foundation for Statistical Computing.
    30. StataCorp, S (2009) Release 11. Statistical Software, StataCorp LP, College Station, TX
    31. Cali艅ski, T, Harabasz, J (1974) A dendrite method for cluster analysis. Communications in Statistics-Theory and Methods 3: pp. 1-27 CrossRef
    32. MacDonald, BT, Tamai, K, He, X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17: pp. 9-26 CrossRef
    33. Park, JK, Song, JH, He, TC, Nam, SW, Lee, JY, Park, WS (2009) Overexpression of Wnt-2 in colorectal cancers. Neoplasma 56: pp. 119-123 CrossRef
    34. Ma, XR, Edmund Sim, UH, Pauline, B, Patricia, L, Rahman, J (2008) Overexpression of WNT2 and TSG101 genes in colorectal carcinoma. Trop Biomed 25: pp. 46-57
    35. Le Floch, N, Rivat, C, De Wever, O, Bruyneel, E, Mareel, M, Dale, T, Gespach, C (2005) The proinvasive activity of Wnt-2 is mediated through a noncanonical Wnt pathway coupled to GSK-3beta and c-Jun/AP-1 signaling. FASEB J 19: pp. 144-146
    36. Kirikoshi, H, Sekihara, H, Katoh, M (2001) WNT10A and WNT6, clustered in human chromosome 2q35 region with head-to-tail manner, are strongly coexpressed in SW480 cells. Biochem Biophys Res Commun 283: pp. 798-805 CrossRef
    37. Mikels, AJ, Nusse, R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4: pp. e115 CrossRef
    38. Lustig, B, Jerchow, B, Sachs, M, Weiler, S, Pietsch, T, Karsten, U, van de Wetering, M, Clevers, H, Schlag, PM, Birchmeier, W, Behrens, J (2002) Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22: pp. 1184-1193 CrossRef
    39. Albuquerque, C, Breukel, C, van der Luijt, R, Fidalgo, P, Lage, P, Slors, FJ, Leitao, CN, Fodde, R, Smits, R (2002) The 鈥榡ust-right鈥?signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11: pp. 1549-1560 CrossRef
    40. Schlesinger, Y, Straussman, R, Keshet, I, Farkash, S, Hecht, M, Zimmerman, J, Eden, E, Yakhini, Z, Ben-Shushan, E, Reubinoff, BE, Bergman, Y, Simon, I, Cedar, H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39: pp. 232-236 CrossRef
    41. Gal-Yam, EN, Egger, G, Iniguez, L, Holster, H, Einarsson, S, Zhang, X, Lin, JC, Liang, G, Jones, PA, Tanay, A (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A 105: pp. 12979-12984 CrossRef
    42. Ohm, JE, McGarvey, KM, Yu, X, Cheng, L, Schuebel, KE, Cope, L, Mohammad, HP, Chen, W, Daniel, VC, Yu, W, Berman, DM, Jenuwein, T, Pruitt, K, Sharkis, SJ, Watkins, DN, Herman, JG, Baylin, SB (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39: pp. 237-242 CrossRef
    43. Widschwendter, M, Fiegl, H, Egle, D, Mueller-Holzner, E, Spizzo, G, Marth, C, Weisenberger, DJ, Campan, M, Young, J, Jacobs, I, Laird, PW (2007) Epigenetic stem cell signature in cancer. Nat Genet 39: pp. 157-158 CrossRef
    44. Bracken, AP, Dietrich, N, Pasini, D, Hansen, KH, Helin, K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: pp. 1123-1136 CrossRef
    45. Lee, TI, Jenner, RG, Boyer, LA, Guenther, MG, Levine, SS, Kumar, RM, Chevalier, B, Johnstone, SE, Cole, MF, Isono, K, Koseki, H, Fuchikami, T, Abe, K, Murray, HL, Zucker, JP, Yuan, B, Bell, GW, Herbolsheimer, E, Hannett, NM, Sun, K, Odom, DT, Otte, AP, Volkert, TL, Bartel, DP, Melton, DA, Gifford, DK, Jaenisch, R, Young, RA (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: pp. 301-313 CrossRef
    46. Boyer, LA, Plath, K, Zeitlinger, J, Brambrink, T, Medeiros, LA, Lee, TI, Levine, SS, Wernig, M, Tajonar, A, Ray, MK, Bell, GW, Otte, AP, Vidal, M, Gifford, DK, Young, RA, Jaenisch, R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: pp. 349-353 CrossRef
    47. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/14/891/prepub
  • 刊物主题:Cancer Research; Oncology; Stem Cells; Animal Models; Internal Medicine;
  • 出版者:BioMed Central
  • ISSN:1471-2407
文摘
Background There is emerging evidence that Wnt pathway activity may increase during the progression from colorectal adenoma to carcinoma and that this increase is potentially an important step towards the invasive stage. Here, we investigated whether epigenetic silencing of Wnt antagonists is the biological driver for this increased Wnt activity in human tissues and how these methylation changes correlate with MSI (Microsatelite Instability) and CIMP (CpG Island Methylator Phenotype) statuses as well as known mutations in genes driving colorectal neoplasia. Methods We conducted a systematic analysis by pyrosequencing, to determine the promoter methylation of CpG islands associated with 17 Wnt signaling component genes. Methylation levels were correlated with MSI and CIMP statuses and known mutations within the APC, BRAF and KRAS genes in 264 matched samples representing the progression from normal to pre-invasive adenoma to colorectal carcinoma. Results We discovered widespread hypermethylation of the Wnt antagonists SFRP1, SFRP2, SFRP5, DKK2, WIF1 and SOX17 in the transition from normal to adenoma with only the Wnt antagonists SFRP1, SFRP2, DKK2 and WIF1 showing further significant increase in methylation from adenoma to carcinoma. We show this to be accompanied by loss of expression of these Wnt antagonists, and by an increase in nuclear Wnt pathway activity. Mixed effects models revealed that mutations in APC, BRAF and KRAS occur at the transition from normal to adenoma stages whilst the hypermethylation of the Wnt antagonists continued to accumulate during the transitions from adenoma to carcinoma stages. Conclusion Our study provides strong evidence for a correlation between progressive hypermethylation and silencing of several Wnt antagonists with stepping-up in Wnt pathway activity beyond the APC loss associated tumour-initiating Wnt signalling levels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700