Ultrasound-assisted headspace ionic-liquid microextraction of polycyclic aromatic hydrocarbons at elevated temperatures
详细信息    查看全文
  • 作者:Jing Xiao (1)
    Jing Cheng (1) chengjingok@mail.ccnu.edu.cn
    Feng Guo (1)
    Haili Hu (1)
    Sha Peng (1)
    Miao Zhang (1)
    Min Cheng (2) 494350301@qq.com
  • 关键词:Headspace ionic liquid microextraction – Polycyclic aromatic hydrocarbons – High ; performance liquid chromatography – Fluorescence detection – Water analysis
  • 刊名:Microchimica Acta
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:177
  • 期:3-4
  • 页码:465-471
  • 全文大小:210.0 KB
  • 参考文献:1. Salafranca J, Pezo D, Nerín C (2009) Assessment of specific migration to aqueous simulants of a new active food packaging containing essential oils by means of an automatic multiple dynamic hollow fibre liquid phase microextraction system. J Chrom A 1216:3731
    2. Jiang X, Basheer C, Zhang J, Lee HK (2005) Dynamic hollow fiber-supported headspace liquid-phase microextraction. J Chrom A 1087:289
    3. Wu YL, Xia LB, Chen R, Hu B (2008) Headspace single drop microextraction combined with HPLC for the determination of trace polycyclic aromatic hydrocarbons in environmental samples. Talanta 74:470
    4. Yan X, Yang C, Ren C, Li D (2008) Importance of extracting solvent vapor pressure in headspace liquid-phase microextraction. J Chrom A 1205:182
    5. Heravi MJ, Sereshti H (2007) Determination of essential oil components of Artemisia haussknechtii Boiss. Using simultaneous hydrodistillation-static headspace liquid phase microextraction-gas chromatography mass spectrometry. J Chrom A 1160:81
    6. Vidal L, Domini CE, Grané N, Psillakis E, Canals A (2007) Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples. Anal Chim Acta 592:9
    7. Han D, Row KH (2012) Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim Acta 176:1
    8. Psillakis E, Kalogerakis N (2003) Developments in liquid-phase microextraction. Trends Anal Chem 22:565
    9. Choi K, Kim SJ, Jin YG, Jang YO, Kim JS, Chung DS (2009) Single drop microextraction using commercial capillary electrophoresis instruments. Anal Chem 81:225
    10. Xu H, Liao Y, Yao JR (2007) Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples. J Chrom A 1167:1
    11. Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Chem 75:5870
    12. Peng JF, Liu JF, Jiang GB, Tai C, Huang MJ (2005) Ionic liquid for high temperature headspace liquid-phase microextraction of chlorinated anilines in environmental water samples. J Chrom A 1072:3
    13. Ye CL, Zhou QX, Wang XM (2006) Headspace liquid-phase microextraction using ionic liquid as extractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at trace levels in water samples. Anal Chim Acta 572:165
    14. Pino V, Ayala JH, Afonso AM, González V (2000) Determination of polycyclic aromatic hydrocarbons in marine sediments by high-performance liquid chromatography after microwave-assisted extraction with micellar media. J Chrom A 869:515
    15. Qin ZP, Bragg L, Ouyang GF, Pawliszyn J (2008) Comparison of thin-film microextraction and stir bar sorptive extraction for the analysis of polycyclic aromatic hydrocarbons in aqueous samples with controlled agitation conditions. J Chrom A 1196:89
    16. Pena MT, Casais MC, Mejuto MC, Cela R (2009) Development of an ionic liquid based dispersive liquid–liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples. J Chrom A 1216:6356
    17. Zhou YY, Yan XP, Kim KN, Wang SW, Liu MG (2006) Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials. J Chrom A 1116:172
    18. Cheng J, Matsadiq G, Liu L, Zhou YW, Chen G (2011) Development of a novel ultrasound-assisted surfactant-enhanced emulsification microextraction method and its application to the analysis of eleven polycyclic aromatic hydrocarbons at trace levels in water. J Chrom A 1218:2476
    19. Yao C, Pitner WR, Anderson JL (2009) Ionic liquids containing the Tris(pentafluoroethyl)trifluorophosphate anion: a new class of highly selective and ultra hydrophobic solvents for the extraction of polycyclic aromatic hydrocarbons using single drop microextraction. Anal Chem 81:5054
    20. Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167
  • 作者单位:1. Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079 China2. School of Mechanical Science and Engineering, Hua Zhong University of Science and Technology, Wuhan, 430074 China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
We have developed a method for ultrasound-assisted ionic-liquid (IL) microextraction at elevated temperatures. A sealed pipette tip was used to hold the IL. The polycyclic aromatic hydrocarbons naphthalene, acenaphthene and fluorene were headspace-extracted into a 30-μL volume of the IL at 60 °C. Cooling is not needed to control the temperature of the extraction solvent because it has almost zero vapor pressure. Following extraction, the analyte-loaded IL was submitted to HPLC with fluorescence detection. Under the optimal conditions, the limits of detection (at S/N?=?3) are 30, 30 and 10 ng L?1 for naphthalene, acenaphthene and fluorene, respectively. Recoveries range from 86 to 110 %, and the extraction efficiency is better than previous methods by a factor of ~40. The technique was applied to the analysis of semivolatile pollutants (PAHs) in real aqueous samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700