Amniotic Membrane Mesenchymal Cells-Derived Factors Skew T Cell Polarization Toward Treg and Downregulate Th1 and Th17 Cells Subsets
详细信息    查看全文
  • 作者:Stefano Pianta ; Patrizia Bonassi Signoroni ; Ivan Muradore…
  • 关键词:Mesenchymal stromal cells ; Human amniotic membrane mesenchymal cells ; Human placenta ; Conditioned medium ; Secretome ; Immunomodulation ; Cytokines ; T cells ; Th1 ; Th2 ; Treg ; Th17
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:11
  • 期:3
  • 页码:394-407
  • 全文大小:1,178 KB
  • 参考文献:1.Cetrulo, K. J., Cetrulo, C. L., Jr., & Taghizadeh, R. R. (Eds.). (2013). Perinatal stem cells. Hoboken: Wiley.
    2.Anzalone, R., Iacono Lo, M., Loria, T., Di Stefano, A., Giannuzzi, P., Farina, F., & La Rocca, G. (2011). Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Reviews and Reports, 7(2), 342-63. doi:10.-007/?s12015-010-9196-4 .View Article PubMed
    3.La Rocca, G., Corrao, S., Iacono Lo, M., Corsello, T., Farina, F., & Anzalone, R. (2012). Novel immunomodulatory markers expressed by human WJ-MSC: an updated review in regenerative and reparative medicine. The Open Tissue Engineering and Regenerative Medicine Journal, 5, 50-8.View Article
    4.La Rocca, G., Iacono Lo, M., Corsello, T., Corrao, S., Farina, F., & Anzalone, R. (2013). Human Wharton’s jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Current Stem Cell Research & Therapy, 8(1), 100-13.View Article
    5.Moodley, Y., Vaghjiani, V., Chan, J., Baltic, S., Ryan, M., Tchongue, J., et al. (2013). Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS ONE, 8(8), e69299. doi:10.-371/?journal.?pone.-069299 .View Article PubMed Central PubMed
    6.Parolini, O., Souza-Moreira, L., O’Valle, F., Magatti, M., Hernandez-Cortes, P., Gonzalez-Rey, E., & Delgado, M. (2014). Therapeutic effect of human amniotic membrane-derived cells on experimental arthritis and other inflammatory disorders. Arthritis & Rheumatology, 66(2), 327-39. doi:10.-002/?art.-8206 .View Article
    7.Parolini, O., Alviano, F., Bergwerf, I., Boraschi, D., De Bari, C., De Waele, P., et al. (2010, February). Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells and Development, 19(2), 143-54. doi:10.-089/?scd.-009.-404 .
    8.Manuelpillai, U., Moodley, Y., Borlongan, C. V., & Parolini, O. (2011). Amniotic membrane and amniotic cells: potential therapeutic tools to combat tissue inflammation and fibrosis? Placenta, 32(Suppl 4), S320–S325. doi:10.-016/?j.?placenta.-011.-4.-10 .View Article PubMed
    9.Silini, A., Parolini, O., Huppertz, B., & Lang, I. (2013). Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies. Current Stem Cell Research & Therapy, 8(1), 6-4.View Article
    10.Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Bühring, H.-J., Evangelista, M., et al. (2008). Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells, 26(2), 300-11. doi:10.-634/?stemcells.-007-0594 .View Article PubMed
    11.Parolini, O., & Caruso, M. (2011). Review: Preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta, 32(Suppl 2), S186–S195. doi:10.-016/?j.?placenta.-010.-2.-16 .View Article PubMed
    12.Pozzobon, M., Piccoli, M., & De Coppi, P. (2014). Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy. Cell and Tissue Banking, 15(2), 199-11. doi:10.-007/?s10561-014-9428-y .PubMed
    13.Bailo, M., Soncini, M., Vertua, E., Signoroni, P. B., Sanzone, S., Lombardi, G., et al. (2004). Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation, 78(10), 1439-448.View Article PubMed
    14.Magatti, M., De Munari, S., Vertua, E., Gibelli, L., Wengler, G. S., & Parolini, O. (2008). Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells, 26(1), 182-92. doi:10.-634/?stemcells.-007-0491 .View Article PubMed
    15.Wolbank, S., Peterbauer, A., Fahrner, M., Hennerbichler, S., van Griensven, M., Stadler, G., et al. (2007). Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Engineering, 13(6), 1173-183. doi:10.-089/?ten.-006.-313 .View Article PubMed
    16.Banas, R. A., Trumpower, C., Bentlejewski, C., Marshall, V., Sing, G., & Zeevi, A. (2008). Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Human Immunology, 69(6), 321-28. doi:10.-016/?j.?humimm.-008.-4.-07 .View Article PubMed
    17.Manochantr, S., U-pratya, Y., Kheolamai, P., Rojphisan, S., Chayosumrit, M., Tantrawatpan, C., et al. (2013). Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton’s jelly and umbilical cord. Internal Medicine Journal, 43(4), 430-39. doi:10.-111/?imj.-2044 .View Article PubMed
    18.Magatti, M.,
  • 作者单位:Stefano Pianta (1) (2)
    Patrizia Bonassi Signoroni (1)
    Ivan Muradore (1)
    Melissa Francis Rodrigues (1)
    Daniele Rossi (1)
    Antonietta Silini (1)
    Ornella Parolini (1)

    1. Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Via Bissolati, 57, I-25124, Brescia, Italy
    2. Doctoral School of Molecular Medicine, University of Milan, Milan, Italy
  • 刊物主题:Cell Biology;
  • 出版者:Springer US
  • ISSN:1558-6804
文摘
We previously demonstrated that cells derived from the mesenchymal layer of the human amniotic membrane (hAMSC) and their conditioned medium (CM-hAMSC) modulate lymphocyte proliferation in a dose-dependent manner. In order to understand the mechanisms involved in immune regulation exerted by hAMSC, we analyzed the effects of CM-hAMSC on T-cell polarization towards Th1, Th2, Th17, and T-regulatory (Treg) subsets. We show that CM-hAMSC equally suppresses the proliferation of both CD4+ T-helper (Th) and CD8+ cytotoxic T-lymphocytes. Moreover, we prove that the CM-hAMSC inhibitory ability affects both central (CD45RO+CD62L+) and effector memory (CD45RO+CD62L?/sup>) subsets. We evaluated the phenotype of CD4+ cells in the MLR setting and showed that CM-hAMSC significantly reduced the expression of markers associated to the Th1 (T-bet+CD119+) and Th17 (RORγt+CD161+) populations, while having no effect on the Th2 population (GATA3+CD193+/GATA3+CD294+cells). T-cell subset modulation was substantiated through the analysis of cytokine release for 6?days during co-culture with alloreactive T-cells, whereby we observed a decrease in specific subset-related cytokines, such as a decrease in pro-inflammatory, Th1-related (TNFα, IFNγ, IL-1β), Th2 (IL-5, IL-6), Th9 (IL-9), and?Th17 (IL-17A, IL-22). Furthermore, CM-hAMSC significantly induced the Treg compartment, as shown by an induction of proliferating CD4+FoxP3+ cells, and an increase of CD25+FoxP3+ and CD39+FoxP3+ Treg in the CD4+ population. Induction of Treg cells was corroborated by the increased secretion of TGF-β. Taken together, these data strengthen the findings regarding the immunomodulatory properties of CM-hAMSC derived from human amniotic membrane MSC, and in particular provide insights into their effect on regulation of T cell polarization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700