Galectin-3 contributes to cisplatin-induced myeloid derived suppressor cells (MDSCs) recruitment in Lewis lung cancer-bearing mice
详细信息    查看全文
  • 作者:Tian Wang (1) (2)
    Zhaohui Chu (1) (2)
    Hao Lin (1) (2)
    Jingwei Jiang (1) (2)
    Xinli Zhou (1) (2)
    Xiaohua Liang (1) (2)
  • 关键词:Myeloid derived suppressor cell ; Galectin ; 3 ; Cisplatin ; Lewis lung cancer cells
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:41
  • 期:6
  • 页码:4069-4076
  • 全文大小:
  • 参考文献:1. Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW, Frei E 3rd (1990) Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247:1457-461 CrossRef
    2. Basak GW, Srivastava AS, Malhotra R, Carrier E (2009) Multiple myeloma bone marrow niche. Curr Pharm Biotechnol 10:345-46 CrossRef
    3. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239-52. doi:10.1038/nrc2618 CrossRef
    4. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162-74. doi:10.1038/nri2506 CrossRef
    5. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49-9. doi:10.1007/s00262-008-0523-4 CrossRef
    6. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419-430. doi:10.1007/s00262-011-1028-0 CrossRef
    7. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80-8. doi:10.1038/sj.cdd.4402237 CrossRef
    8. Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V (2012) Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol 22:342-49. doi:10.1016/j.semcancer.2012.02.005 CrossRef
    9. Umansky V, Sevko A (2012) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. doi:10.1007/s12307-012-0126-7
    10. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1-bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123:39-9. doi:10.1007/s10549-009-0622-8 CrossRef
    11. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284-90 CrossRef
    12. Wu CT, Hsieh CC, Lin CC, Chen WC, Hong JH, Chen MF (2012) Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl) 90:1343-355. doi:10.1007/s00109-012-0916-x CrossRef
    13. Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G, Cannan D, Ramacher M, Kato M, Overwijk WW, Chen SH, Umansky VY, Sikora AG (2012) Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol 188:5365-376. doi:10.4049/jimmunol.1103553 CrossRef
    14. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71:7463-470. doi:10.1158/0008-5472.can-11-2449 CrossRef
    15. Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L, Ramacher M, Kato M, Schadendorf D, Baniyash M, Umansky V (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Invest Dermatol 133:1610-619. doi:10.1038/jid.2012.444 CrossRef
    16. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583-594. doi:10.1158/1078-0432.CCR-10-0733 CrossRef
    17. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148-157. doi:10.1158/1078-0432.CCR-08-1332 CrossRef
    18. Ohannesian DW, Lotan D, Thomas P, Jessup JM, Fukuda M, Gabius HJ, Lotan R (1995) Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res 55:2191-199
    19. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu FT (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165:2156-164 CrossRef
    20. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636-45 CrossRef
    21. Buttery R, Monaghan H, Salter DM, Sethi T (2004) Galectin-3: differential expression between small-cell and non-small-cell lung cancer. Histopathology 44:339-44. doi:10.1111/j.1365-2559.2004.01815.x CrossRef
    22. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464-74 CrossRef
    23. Dong S, Hughes RC (1997) Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconj J 14:267-74 CrossRef
    24. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650-658 CrossRef
    25. Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, Fein M, Rasch MG, Tan YX, Qiu J, Park J, Sinha P, Bissell MJ, Frengen E, Werb Z, Egeblad M (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21:488-03. doi:10.1016/j.ccr.2012.02.017 CrossRef
    26. Matsuda Y, Yamagiwa Y, Fukushima K, Ueno Y, Shimosegawa T (2008) Expression of galectin-3 involved in prognosis of patients with hepatocellular carcinoma. Hepatol Res 38:1098-111. doi:10.1111/j.1872-034X.2008.00387.x CrossRef
    27. Baptiste TA, James A, Saria M, Ochieng J (2007) Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res 313:652-64. doi:10.1016/j.yexcr.2006.11.005 CrossRef
    28. Cay T (2012) Immunhistochemical expression of galectin-3 in cancer: a review of the literature. Turk Patoloji Derg 28:1-0. doi:10.5146/tjpath.2012.01090
    29. Iacovazzi PA, Notarnicola M, Caruso MG, Guerra V, Frisullo S, Altomare DF (2010) Serum levels of galectin-3 and its ligand 90?k/mac-2?bp in colorectal cancer patients. Immunopharmacol Immunotoxicol 32:160-64. doi:10.1080/08923970902936880 CrossRef
    30. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S (2000) Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6:1389-393
    31. Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, Howell SB (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595-604. doi:10.1158/1535-7163.mct-05-0102 CrossRef
    32. Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL, Arnoys EJ (2010) Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta 1800:181-89. doi:10.1016/j.bbagen.2009.07.005 CrossRef
    33. Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaka Y, Yoshida J, Hattori K, Tomiyama Y, Raz A, Kubo T (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6:4635-640
    34. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015-029. doi:10.1172/jci45862 CrossRef
    35. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507-513. doi:10.1158/0008-5472.CAN-06-4174 CrossRef
    36. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219-28. doi:10.1182/blood-2007-04-086835 CrossRef
    37. Cao Z, Said N, Amin S, Wu HK, Bruce A, Garate M, Hsu DK, Kuwabara I, Liu FT, Panjwani N (2002) Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 277:42299-2305. doi:10.1074/jbc.M200981200 CrossRef
    38. Friedrichs J, Manninen A, Muller DJ, Helenius J (2008) Galectin-3 regulates integrin alpha2beta1-mediated adhesion to collagen-I and -IV. J Biol Chem 283:32264-2272. doi:10.1074/jbc.M803634200 CrossRef
    39. Kuwabara I, Liu FT (1996) Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 156:3939-944
    40. Rao SP, Wang Z, Zuberi RI, Sikora L, Bahaie NS, Zuraw BL, Liu FT, Sriramarao P (2007) Galectin-3 functions as an adhesion molecule to support eosinophil rolling and adhesion under conditions of flow. J Immunol 179:7800-807 CrossRef
    41. Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, Park EJ (2010) Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. J Immunol 185:7037-046. doi:10.4049/jimmunol.1000154 CrossRef
    42. Correia AL, Bissell MJ (2012) The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 15:39-9. doi:10.1016/j.drup.2012.01.006 CrossRef
    43. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54-7. doi:10.1158/2159-8274.cd-10-0028 CrossRef
  • 作者单位:Tian Wang (1) (2)
    Zhaohui Chu (1) (2)
    Hao Lin (1) (2)
    Jingwei Jiang (1) (2)
    Xinli Zhou (1) (2)
    Xiaohua Liang (1) (2)

    1. Department of Oncology, Huashan Hospital, Fudan University, No. 12, Wulumuqi Zhong Road, Shanghai, 200040, China
    2. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200040, China
  • ISSN:1573-4978
文摘
Recently the recruitment/migration of myeloid derived suppressor cells (MDSCs) to tumor microenvironment after chemotherapy has attracted much attention. To determine the detailed mechanism for the responses of MDSCs to these chemotherapies, we investigated the changes of galectin-3 and MDSCs in response to cisplatin(0.4?mg/kg, 4?mg/kg) treatment both in vivo and ex vivo. In the process of cisplatin, we assessed levels of galectin-3 and MDSCs in the Lewis lung cancer (LLC) bearing mice using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), immunofluorence and flow cytometry (FCM). The expression and changes of galectin-3 in the LLC cell line were detected by western blot, immunofluorence and ELISA. The ligand for galectin-3 on MDSCs and the chemotaxis of galectin-3 to MDSCs were confirmed using FCM and transwell. Parallel increased level of galectin-3 with the number of MDSCs in vivo was detected after cisplatin treatment. LLC cells expressed galectin-3 and cisplatin increased galectin-3 level in the culture medium. Furthermore, MDSCs were detected to express CD98, the ligand of galectin-3, and could be recruited by galectin-3. Our results suggested that the elevated expression of gelectin-3 in LLC tumor cells may contribute to the migration of MDSCs to the tumor microenvironment in response to cisplatin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700