Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria
详细信息    查看全文
  • 作者:Maria Celisa Santimano (1)
    Meenal Kowshik (1)
  • 关键词:Benign soil bacteria ; Zinc oxide nanoparticles ; Nutrient cycling ; Growth rates ; Enzymatic profile
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:185
  • 期:9
  • 页码:7205-7214
  • 全文大小:406KB
  • 参考文献:1. Adams, L. K., Lyon, D. Y., & Alvarez, P. J. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. / Water Research, 40, 3527-532. CrossRef
    2. Babich, H., & Stotzky, G. (1978). Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. / Applied and Environmental Microbiology, 36, 906-14.
    3. Bamborough, L., & Cummings, S. P. (2009). The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. / Biology and Fertility of Soils, 45, 273-80. CrossRef
    4. Berney, M., Weilenmann, H., Ihssen, J., Bassin, C., & Egli, T. (2006). Specific growth rate determines the sensitivity of / Escherichia coli to thermal, UVA, and solar disinfection. / Applied and Environmental Microbiology, 72, 2586-593. CrossRef
    5. Beveridge, T. J., Forsberg, C. W., & Doyle, R. J. (1982). Major sites of metal binding in / Bacillus licheniformis walls. / Journal of Bacteriology, 150, 1438-448.
    6. Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M., & Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. / Environmental Pollution, 158, 41-7. CrossRef
    7. Bong, C. W., Malfatti, F., Azam, F., Obayashi, Y., & Suzuki, S. (2010). The effect of zinc exposure on the bacteria abundance & proteolytic activity in seawater. In N. Hamamura, S. Suzuki, S. Mendo, C. M. Barroso, H. Iwata, & S. Tanabe (Eds.), / Interdisciplinary studies on environmental chemistry -Biological responses to contaminants (pp. 57-3). Tokyo: Terrapub.
    8. Boxall, A. B. A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., et al. (2007). / Current and future predicted environmental exposure to engineered nanoparticles. York, UK: Central Science Laboratory, Report to the Department for the Environment, Food and Rural Affairs.
    9. Caille, O., Rossier, C., & Perron, K. (2007). A copper-activated two-component system interacts with zinc and imipenem resistance in / Pseudomonas aeruginosa. / Journal of Bacteriology, 189, 4561-568. CrossRef
    10. Chen, J., Obbard, J. P., & Stanforth, R. R. (2001). Microbial cellulose decomposition in soils from a rifle range contaminated with heavy metals. / Environmental Pollution, 111, 367-75. CrossRef
    11. Comini, E., Faglia, G., Sberveglieri, G., Pan, Z., & Wang, Z. L. (2002). Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. / Applied Physics Letters, 81, 1869-871. CrossRef
    12. Coyne, M. S. (2004). / Soil microbiology: An exploratory approach. Singapore: Delmar publishers.
    13. Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive earth's biogeochemical cycles. / Science, 320, 1034-039. CrossRef
    14. Fuka, M. M., Engel, M., Hagn, A., Munch, J. C., Sommer, M., & Schloter, M. (2009). Changes of diversity pattern of proteolytic bacteria over time and space in an agricultural soil. / Microbial Ecology, 57, 391-01. CrossRef
    15. Fukumori, F., Kudo, T., & Horikoshi, K. (1985). Purification and properties of a cellulase from alkalophilic / Bacillus sp. No. 1139. / Journal of General Microbiology, 131, 3339-345.
    16. Gangadharan, D., Nampoothiri, K. M., Sivaramakrishnan, S., & Pandey, A. (2009). Biochemical characterization of raw starch digesting α-amylase from / Bacillus amyloliquefaciens. / Applied Biochemistry and Biotechnology, 158, 653-62. CrossRef
    17. Gans, J., Wolinsky, M., & Dunbar, J. (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. / Science, 309, 1387-390. CrossRef
    18. Ge, Y., Schimel, J. P., & Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. / Environmental Science and Technology, 45, 1659-664. CrossRef
    19. Ghafoor, A., & Hasnain, S. (2010). Purification and characterization of an extracellular protease from / B. subtilis EAG-2 strain isolated from ornamental plant nursery. / Journal of Microbiology, 59, 107-12.
    20. Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. / Environmental Science and Technology, 43, 9216-222. CrossRef
    21. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria / Vibrio fischeri and crustaceans / Daphnia magna and / Thamnocephalusplatyurus. / Chemosphere, 71, 1308-316. CrossRef
    22. Hindhumathi, M., Vijayalakshmi, S., & Thankamani, V. (2011). Optimization and cultural characterization of alkalophilic protease producing / Bacillus sp. GPA4. / Research in Biotechnology, 2, 13-9.
    23. Huang, G. G., Wang, C. T., Tang, H. T., Huang, Y. S., & Yang, J. (2006). ZnO nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds. / Analytical Chemistry, 78, 2397-404. CrossRef
    24. Jose, J., Giridhar, R., Anas, A., Loka Bharathi, P. A., & Nair, S. (2011). Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India. / Environmental Pollution, 159, 2775-780. CrossRef
    25. Jubier-Maurin, V., Rodrigue, A., Ouahrani-Bettache, S., Layssac, M., Mandrand-Berthelot, M., Kohler, S., et al. (2001). Identification of the / nik gene cluster of / Brucellasuis: regulation and contribution to urease activity. / Journal of Bacteriology, 183, 426-34. CrossRef
    26. Kim, D., Matsuda, O., & Yamamoto, T. (1997). Nitrification, denitrification and nitrate reduction rates in the sediment of Hioshima bay, Japan. / Journal of Oceanography, 53, 317-24.
    27. Kim, S., Kim, J., & Lee, I. (2011). Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in / Cucumis sativus. / Chemistry and Ecology, 27, 49-5. CrossRef
    28. Klaine, S. J., Koelmans, A. A., Horne, N., Carley, S., Handy, R. D., Kapustka, L., et al. (2012). Paradigms to assess the environmental impact of manufactured nanomaterials. / Environmental Toxicology and Chemistry, 31, 3-4. CrossRef
    29. Kumar, A., Pandey, A., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. / Chemosphere, 83, 1124-132. CrossRef
    30. Madsen, E. L. (2005). Identifying microorganisms responsible for ecologically significant biogeochemical processes. / Nature Reviews Microbiology, 3, 439-46. CrossRef
    31. Magalhaes, C., Costa, J., Teixeira, C., & Bordalo, A. A. (2007). Impact of trace metals on dentrification in estuarine sediments of the Douro river estuary, Portugal. / Marine Chemistry, 107, 332-41. CrossRef
    32. Martinez, J. L., Sanchez, M. B., Martinez-Solano, L., Hernandez, A., Germendia, L., Fajardo, A., et al. (2009). Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. / FEMS Microbiology Reviews, 33, 430-49. CrossRef
    33. Miller, R. J., Lenihan, H. S., Muller, E. B., Tseng, N., Hanna, S. K., & Keller, A. A. (2010). Impacts of metal oxide nanoparticles on marine phytoplankton. / Environmental Science and Technology, 44, 7329-334. CrossRef
    34. Mueller, N., & Nowack, B. (2009). Exposure modeling of engineered nanoparticles in the environment. / Environmental Science and Technology, 42, 4447-453. CrossRef
    35. Nweke, C. O., & Okpokwasili, G. C. (2011). Inhibition of β-galactosidase and α-glucosidase synthesis in petroleum refinery effluent bacteria by zinc and cadmium. / Journal of Environmental Chemistry and Ecotoxicology, 3, 68-4.
    36. Nweke, C. O., Alisi, C. S., Okolo, J. C., & Nwanyanwu, C. E. (2007). Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. / Applied Ecology and Environmental Research, 5, 123-32.
    37. O’Brien, N. J., & Cummins, E. J. (2011). A risk assessment framework for assessing metallic nanomaterials of environmental concern: aquatic exposure and behavior. / Risk Analysis, 31, 1539-924.
    38. Plette, A. C. C., Benedetti, M. F., & Riemsdijk, W. H. V. (1996). Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a Gram-positive soil bacterium. / Environmental Science & Technology, 30, 1902-910. CrossRef
    39. Qu, J., Ren, G., Chen, B., Fan, J., & Yong, E. (2011). Effects of lead and zinc mining contamination on bacterial community diversity & enzyme activities of vicinal cropland. / Environmental Monitoring and Assessment, 182, 597-06. CrossRef
    40. Renella, G., Mench, M., Landi, L., & Nannipieri, P. (2005). Microbial diversity and hydrolase synthesis in long term Cd-contaminated soils. / Soil Biology and Biochemistry, 37, 133-39. CrossRef
    41. Romero, M. C., Gatti, E. M., & Bruno, D. E. (1999). Effects of heavy metals on microbial activity of water and sediment communities. / World Journal of Microbiology and Biotechnology, 15, 179-84. CrossRef
    42. Sakadevan, K., Zheng, H., & Bavor, H. J. (1999). Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater. / Water Science and Technology, 40, 349-55. CrossRef
    43. Seshachala, U., & Tallapragada, P. (2012). Phosphate solubilizers from the rhizosphere of / Piper nigrum L. in Karnataka, India. / Chilean. / Journal of Agricultural Research, 72, 397-03.
    44. Sharma, R., Christi, Y., & Banerjee, U. C. (2001). Production, purification, characterization and applications of lipase. / Biotechnology Advances, 19, 627-62. CrossRef
    45. Shen, G., Lu, Y., & Hong, J. (2006). Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. / Ecotoxicology and Environmental Safety, 63, 474-80. CrossRef
    46. Silver, S., & Phung, L. T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. / Journal of Industrial Microbiology and Biotechnology, 32, 587-05. CrossRef
    47. Simbert, R. M., & Krieg, N. R. (1981). General characterization. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, & G. B. Phillips (Eds.), / Manual of methods for general bacteriology (pp. 409-43). Washington, D.C.: American Society of Microbiology.
    48. Sinha, R., Karan, R., Sinha, A., & Khare, S. K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. / Bioresource Technology, 102, 1516-520. CrossRef
    49. Smejkalova, M., Mikanova, O., & Boruvka, L. (2003). Effects of heavy metal concentrations on biological activity of soil micro-organisms. / Plant, Soil and Environment, 49, 321-26.
    50. Tayel, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem, M. F., et al. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. / Journal of Food Safety, 31, 211-18. CrossRef
    51. Vaccari, D. A., Strom, P. F., & Alleman, J. E. (2006). / Microbial transformations in environmental biology for engineers and scientists (pp. 387-41). New Jersey: Wiley-Interscience, John Wiley & Sons.
  • 作者单位:Maria Celisa Santimano (1)
    Meenal Kowshik (1)

    1. Department of Biological Sciences, Birla Institute of Technology & Science Pilani, KK Birla Goa Campus, Zuarinagar, Goa, 403726, India
文摘
The extensive production and usage of nanoparticles with ultimate disposal in the environment leads to unintentional exposure of non-target environmentally beneficial bacteria thereby posing a serious threat to the native soil inhabitants. Soil microflora is an important link in the biogeochemical cycling of nutrients, affecting ecosystem functioning and productivity. This study evaluates the effect of one of the widely used nanoparticles, zinc oxide on two predominant soil bacteria, Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa with respect to their biocatalytic activities. Growth profiles of these bacteria in the presence of zinc oxide nanoparticles (ZnONPs) at a concentration of 20?ppm exhibited a prolonged lag phase in B. subtilis, whereas no significant effect was observed in the case of P. aeruginosa even at 200?ppm. Interestingly, the enzymatic profile of both the organisms was affected at non-lethal ZnONPs concentrations. The most pronounced effect was on the enzymes associated with amylolytic activity, denitrification and urea degradation wherein total inhibition of activity was noted in B. subtilis. The enzyme activities were lowered in the case of P. aeruginosa. The results presented here reiterate a critical need for exposure assessment and risk characterization of nanomaterial disposal on soil microflora while formalizing waste management strategies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700