GH3-Mediated Auxin Conjugation Can Result in Either Transient or Oscillatory Transcriptional Auxin Responses
详细信息    查看全文
  • 作者:Nathan Mellor ; Malcolm J. Bennett ; John R. King
  • 关键词:Auxin ; Homoeostasis ; GH3 ; Conjugation ; Oscillations
  • 刊名:Bulletin of Mathematical Biology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:78
  • 期:2
  • 页码:210-234
  • 全文大小:1,280 KB
  • 参考文献:Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111(1):9–17CrossRef
    Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251(4):533–549CrossRef
    Clewley RH (2012) Hybrid models and biological model reduction with PyDSTool. PLoS Comput Biol 8(8):e1002628CrossRef
    Clewley RH, Sherwood WE, LaMar MD, Guckenheimer JM (2007) PyDSTool, a software environment for dynamical systems modeling. http://​pydstool.​sourceforge.​net
    Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435(7041):441–445CrossRef
    Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M (2005) Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J 44(3):382–395CrossRef
    Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460CrossRef
    Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435(7041):446–451CrossRef
    Kramer EM, Ackelsberg EM (2015) Auxin metabolism rates and implications for plant development. Front Plant Sci 6:150
    Lau S, De Smet I, Kolb M, Meinhardt H, Jurgens G (2011) Auxin triggers a genetic switch. Nat Cell Biol 13:611–615CrossRef
    Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950CrossRef
    Ludwig-Müller Jutta (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62(6):1757–1773. doi:10.​1093/​jxb/​erq412 CrossRef
    Mellor N (2013) Multiscale modelling of auxin regulated lateral root emergence. PhD thesis, The University of Nottingham
    Mellor N, Péret B, Porco S, Sairanen I, Ljung K, Bennett MJ, King JR (2015) Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis. J Theor Biol 366:57–70CrossRef
    Middleton AM, King JR, Bennett MJ, Owen MR (2010) Mathematical modelling of the Aux/IAA negative feedback loop. Bull Math Biol 72(6):1383–1407CrossRef MathSciNet MATH
    Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17(2):444–463CrossRef
    Östin A, Kowalyczk M, Bhalerao RP, Sandberg G (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118:285–296CrossRef
    Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17(12):3282–3300CrossRef
    Pencik A, Simonovic B, Petersson SV, Henykova E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zazimalova E, Novak O, Sandberg G, Ljung K (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25:3858–3870CrossRef
    Peret B, De Rybel B, Casimiro I, Benkova E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009a) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14(7):399–408CrossRef
    Peret B, Larrieu A, Bennett MJ (2009b) Lateral root emergence: a difficult birth. J Exp Bot 60(13):3637–3643CrossRef
    Peret B, Middleton AM, French AP, Larrieu A, Bishopp A, Njo M, Wells DM, Porco S, Mellor N, Band LR, Casimiro I, Kleine-Vehn J, Vanneste S, Sairanen I, Mallet R, Sandberg G, Ljung K, Beeckman T, Benkova E, Friml J, Kramer E, King JR, De Smet I, Pridmore T, Owen MR, Bennett MJ (2013) Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Mol Syst Biol 9:699CrossRef
    Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627CrossRef
    Swarup K, Benkov E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10(8):946–954CrossRef
    Swarup R, Péret B (2012) Aux/lax family of auxin influx carriers—an overview. Front Plant Sci 3:225CrossRef
    Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847–859CrossRef
    Terol Javier, Domingo Concha, Talón Manuel (2006) The GH3 family in plants: genome wide analysis in rice and evolutionary history based on EST analysis. Gene 371(2):279–290CrossRef
    Zazimalova E, Murphy AS, Yang H, Hoyerov K, Hosek P (2010) Auxin transporters-why so many? Cold Spring Harb Perspect Biol 2(3):a001552CrossRef
  • 作者单位:Nathan Mellor (1)
    Malcolm J. Bennett (1)
    John R. King (1) (2)

    1. Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
    2. School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Biology
  • 出版者:Springer New York
  • ISSN:1522-9602
文摘
The conjugation of the phytohormone auxin to amino acids via members of the gene family GH3 is an important component in the auxin-degradation pathway in the model plant species Arabidopsis thaliana, as well as many other plant species. Since the GH3 genes are themselves up-regulated in response to auxin, providing a negative feedback on intracellular auxin levels, it is hypothesised that the GH3s have a role in auxin homoeostasis. To investigate this, we develop a mathematical model of auxin signalling and response that includes the auxin-inducible negative feedback from GH3 on the rate of auxin degradation. In addition, we include a positive feedback on the rate of auxin input via the auxin influx transporter LAX3, shown previously to be expressed in response to auxin and to have an important role during lateral root emergence. In the absence of the LAX3 positive feedback, we show that the GH3 negative feedback suffices to generate a transient transcriptional response to auxin in the shape of damped oscillations of the model system. When LAX3 positive feedback is present, sustained oscillations of the system are possible. Using steady-state analyses, we identify and discuss key parameters affecting the oscillatory behaviour of the model. The transient peak of auxin and subsequent transcriptional response caused by the up-regulation of GH3 represents a possible protective homoeostasis mechanism that may be used by plant cells in response to excess auxin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700