TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin
详细信息    查看全文
  • 作者:Masanobu Suzuki ; Masashi Watanabe ; Yuji Nakamaru…
  • 关键词:RelA/p65 ; IκBα ; TLR ; Ubiquitin ; Ubiquitin ligase ; E3
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:73
  • 期:5
  • 页码:1085-1101
  • 全文大小:4,399 KB
  • 参考文献:1.Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224CrossRef PubMed
    2.Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362CrossRef PubMed
    3.Hatakeyama S, Kitagawa M, Nakayama K, Shirane M, Matsumoto M, Hattori K, Higashi H, Nakano H, Okumura K, Onoe K, Good RA (1999) Ubiquitin-dependent degradation of IkappaBalpha is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc Natl Acad Sci USA 96:3859–3863PubMedCentral CrossRef PubMed
    4.Li Y, Gazdoiu S, Pan ZQ, Fuchs SY (2004) Stability of homologue of Slimb F-box protein is regulated by availability of its substrate. J Biol Chem 279:11074–11080CrossRef PubMed
    5.Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109CrossRef PubMed
    6.Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479CrossRef PubMed
    7.Scheffner M, Nuber U, Huibregtse JM (1995) Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 373:81–83CrossRef PubMed
    8.Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258:8206–8214PubMed
    9.Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci USA 92:2563–2567PubMedCentral CrossRef PubMed
    10.Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369PubMedCentral CrossRef PubMed
    11.Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI (2001) U box proteins as a new family of ubiquitin-protein ligases. J Biol Chem 276:33111–33120CrossRef PubMed
    12.Meroni G, Diez-Roux G (2005) TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays 27:1147–1157CrossRef PubMed
    13.Kano S, Miyajima N, Fukuda S, Hatakeyama S (2008) Tripartite motif protein 32 facilitates cell growth and migration via degradation of Abl-interactor 2. Cancer Res 68:5572–5580CrossRef PubMed
    14.Hatakeyama S (2011) TRIM proteins and cancer. Nat Rev Cancer 11:792–804CrossRef PubMed
    15.Zhang L, Huang NJ, Chen C, Tang W, Kornbluth S (2012) Ubiquitylation of p53 by the APC/C inhibitor Trim39. Proc Natl Acad Sci USA 109:20931–20936PubMedCentral CrossRef PubMed
    16.Lee SS, Fu NY, Sukumaran SK, Wan KF, Wan Q, Yu VC (2009) TRIM39 is a MOAP-1-binding protein that stabilizes MOAP-1 through inhibition of its poly-ubiquitination process. Exp Cell Res 315:1313–1325CrossRef PubMed
    17.Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3:799–808CrossRef PubMed
    18.Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG, Ballabio A (2001) The tripartite motif family identifies cell compartments. EMBO J 20:2140–2151PubMedCentral CrossRef PubMed
    19.Versteeg GA, Rajsbaum R, Sanchez-Aparicio MT, Maestre AM, Valdiviezo J, Shi M, Inn KS, Fernandez-Sesma A, Jung J, Garcia-Sastre A (2013) The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38:384–398PubMedCentral CrossRef PubMed
    20.Kurata R, Tajima A, Yonezawa T, Inoko H (2013) TRIM39R, but not TRIM39B, regulates type I interferon response. Biochem Biophys Res Commun 436:90–95CrossRef PubMed
    21.Kurata R, Nakaoka H, Tajima A, Hosomichi K, Shiina T, Meguro A, Mizuki N, Ohono S, Inoue I, Inoko H (2010) TRIM39 and RNF39 are associated with Behcet’s disease independently of HLA-B *51 and -A *26. Biochem Biophys Res Commun 401:533–537CrossRef PubMed
    22.Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N, Kitaoka T, Fukada T, Hibi M, Hirano T (1996) A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 15:3651–3658PubMedCentral PubMed
    23.Matsuda M, Tsukiyama T, Bohgaki M, Nonomura K, Hatakeyama S (2007) Establishment of a newly improved detection system for NF-kappaB activity. Immunol Lett 109:175–181CrossRef PubMed
    24.Kondo T, Watanabe M, Hatakeyama S (2012) TRIM59 interacts with ECSIT and negatively regulates NF-kappaB and IRF-3/7-mediated signal pathways. Biochem Biophys Res Commun 422:501–507CrossRef PubMed
    25.Noguchi K, Okumura F, Takahashi N, Kataoka A, Kamiyama T, Todo S, Hatakeyama S (2011) TRIM40 promotes neddylation of IKKgamma and is downregulated in gastrointestinal cancers. Carcinogenesis 32:995–1004CrossRef PubMed
    26.Watanabe M, Tsukiyama T, Hatakeyama S (2009) TRIM31 interacts with p52(Shc) and inhibits Src-induced anchorage-independent growth. Biochem Biophys Res Commun 388:422–427CrossRef PubMed
    27.Atzei P, Gargan S, Curran N, Moynagh PN (2010) Cactin targets the MHC class III protein IkappaB-like (IkappaBL) and inhibits NF-kappaB and interferon-regulatory factor signaling pathways. J Biol Chem 285:36804–36817PubMedCentral CrossRef PubMed
    28.Lin P, Huang LH, Steward R (2000) Cactin, a conserved protein that interacts with the Drosophila IkappaB protein cactus and modulates its function. Mech Dev 94:57–65CrossRef PubMed
    29.Arenzana-Seisdedos F, Thompson J, Rodriguez MS, Bachelerie F, Thomas D, Hay RT (1995) Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B. Mol Cell Biol 15:2689–2696PubMedCentral CrossRef PubMed
    30.Jin J, Samuvel DJ, Zhang X, Li Y, Lu Z, Lopes-Virella MF, Huang Y (2011) Coactivation of TLR4 and TLR2/6 coordinates an additive augmentation on IL-6 gene transcription via p38MAPK pathway in U937 mononuclear cells. Mol Immunol 49:423–432PubMedCentral CrossRef PubMed
    31.Atzei P, Yang F, Collery R, Kennedy BN, Moynagh PN (2010) Characterisation of expression patterns and functional role of Cactin in early zebrafish development. Gene Expr Patterns 10:199–206CrossRef PubMed
    32.Tannoury H, Rodriguez V, Kovacevic I, Ibourk M, Lee M, Cram EJ (2010) CACN-1/Cactin interacts genetically with MIG-2 GTPase signaling to control distal tip cell migration in C. elegans. Dev Biol 341:176–185PubMedCentral CrossRef PubMed
    33.LaBonty M, Szmygiel C, Byrnes LE, Hughes S, Woollard A, Cram EJ (2014) CACN-1/Cactin plays a role in Wnt signaling in C. elegans. PLoS One 9:e101945PubMedCentral CrossRef PubMed
    34.Lehner B, Semple JI, Brown SE, Counsell D, Campbell RD, Sanderson CM (2004) Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 83:153–167CrossRef PubMed
    35.Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ (2004) TAB 2 and TAB 3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15:535–548CrossRef PubMed
    36.Krutzfeldt M, Ellis M, Weekes DB, Bull JJ, Eilers M, Vivanco MD, Sellers WR, Mittnacht S (2005) Selective ablation of retinoblastoma protein function by the RET finger protein. Mol Cell 18:213–224CrossRef PubMed
    37.Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, McNally E, Pickart C, Ma A (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5:1052–1060CrossRef PubMed
    38.Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699CrossRef PubMed
    39.Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197:263–268PubMedCentral CrossRef PubMed
    40.Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528CrossRef PubMed
    41.Okamoto K, Makino S, Yoshikawa Y, Takaki A, Nagatsuka Y, Ota M, Tamiya G, Kimura A, Bahram S, Inoko H (2003) Identification of I kappa BL as the second major histocompatibility complex-linked susceptibility locus for rheumatoid arthritis. Am J Hum Genet 72:303–312PubMedCentral CrossRef PubMed
    42.Shibata H, Yasunami M, Obuchi N, Takahashi M, Kobayashi Y, Numano F, Kimura A (2006) Direct determination of single nucleotide polymorphism haplotype of NFKBIL1 promoter polymorphism by DNA conformation analysis and its application to association study of chronic inflammatory diseases. Hum Immunol 67:363–373CrossRef PubMed
    43.de la Concha EG, Fernandez-Arquero M, Lopez-Nava G, Martin E, Allcock RJ, Conejero L, Paredes JG, Diaz-Rubio M (2000) Susceptibility to severe ulcerative colitis is associated with polymorphism in the central MHC gene IKBL. Gastroenterology 119:1491–1495CrossRef PubMed
    44.Castiblanco J, Anaya JM (2008) The IkappaBL gene polymorphism influences risk of acquiring systemic lupus erythematosus and Sjogren’s syndrome. Hum Immunol 69:45–51CrossRef PubMed
    45.Yamashita T, Hamaguchi K, Kusuda Y, Kimura A, Sakata T, Yoshimatsu H (2014) IKBL promoter polymorphism is strongly associated with resistance to type 1 diabetes in Japanese. Tissue Antigens 63:223–230CrossRef
    46.Miterski B, Bohringer S, Klein W, Sindern E, Haupts M, Schimrigk S, Epplen JT (2002) Inhibitors in the NFkappaB cascade comprise prime candidate genes predisposing to multiple sclerosis, especially in selected combinations. Genes Immun 3:211–219CrossRef PubMed
  • 作者单位:Masanobu Suzuki (1) (2)
    Masashi Watanabe (1)
    Yuji Nakamaru (2)
    Dai Takagi (2)
    Hidehisa Takahashi (1)
    Satoshi Fukuda (2)
    Shigetsugu Hatakeyama (1)

    1. Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
    2. Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
NFκB is one of the central regulators of cell survival, immunity, inflammation, carcinogenesis and organogenesis. The activation of NFκB is strictly regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. Several types of ubiquitination play important roles in multi-step regulations of the NFκB pathway. Some of the tripartite motif-containing (TRIM) proteins functioning as E3 ubiquitin ligases are known to regulate various biological processes such as inflammatory signaling pathways. One of the TRIM family proteins, TRIM39, for which the gene has single nucleotide polymorphisms, has been identified as one of the genetic factors in Behcet’s disease. However, the role of TRIM39 in inflammatory signaling had not been fully elucidated. In this study, to elucidate the function of TRIM39 in inflammatory signaling, we performed yeast two-hybrid screening using TRIM39 as a bait and identified Cactin, which has been reported to inhibit NFκB- and TLR-mediated transcriptions. We show that TRIM39 stabilizes Cactin protein and that Cactin is upregulated after TNFα stimulation. TRIM39 knockdown also causes activation of the NFκB signal. These findings suggest that TRIM39 negatively regulates the NFκB signal in collaboration with Cactin induced by inflammatory stimulants such as TNFα. Keywords RelA/p65 IκBα TLR Ubiquitin Ubiquitin ligase E3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700