Development of a high-order solver for blood flow
详细信息    查看全文
  • 作者:Hassan Khurshid ; Klaus A. Hoffmann
  • 关键词:WENO scheme ; non ; Newtonian flow ; Incompressible
  • 刊名:Engineering with Computers
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:31
  • 期:1
  • 页码:51-71
  • 全文大小:4,115 KB
  • 参考文献:1. Fahraeus R, Lindquist R (1931) Viscosity of blood in narrow capillary tubes. Am J Physiol 96:562-68
    2. Denning A, Watson J (1900) The emergence of rheology. Phys Today 21:23-0
    3. Brecher GA (1956) Venous return. Grune and Stratton, New York
    4. Whitmore RL (1968) Rheolgy of the circulation. Pergamon Press, Oxford
    5. Schmid-Schonbein H (1976) Microrheolgy of erythrocytes, blood viscosity, and the distributions of blood flow in the microcirculation. International review of physiology, cardiovascular physiology II, Vol. 9. University Park Press, Baltimore
    6. Cokelet GR, Meiselman HJ, Brooks DE (1980) Erythrocytes mechanics and blood flow. Alan R. Liss, New York
    7. Dintenfass L, Seaman GVF (1981) Blood viscosity in heart disease and cancer. Pergamon Press, Oxford
    8. Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 263:H1770–H1778
    9. Liepsch D, Kamada T, Poll A, Moravec S (1994) Two-phase flow measurements in glass tube models with a laser-Doppler-anemometer. In: Hosoda S, Yaginuma T, Sugawara M, Taylor MG, Caro CG (eds) Recent progress in cardiovascular mechanics, Harwood Academic Publishers, Switzerland
    10. Haynes RH, Burton AC (1959) Role of the non-Newtonian behaviour of the blood in hemodynamics. Am J Physiol 197:943-50
    11. Atabek HB, Chang CC, Fingerson ML (1964) Measurement of laminar oscillatory flow in the inlet length of a circular tube. Phys Med Biol 9:219-27 CrossRef
    12. Attinger EO, Sugawara H, Navarro A (1966) Pulsative flow methods sin distensible tube. Circ Res 18:447-56 CrossRef
    13. Muller A (1954) Uber die Verwendung des Pitot-Rohreszur Geschwindigkeitsmessung. Helvetica Physiologica Acta 12:98-11
    14. Freis ED, Heath WC (1964) Hydrodynamics of aortic blood flow. Circ Res 14:105-16 CrossRef
    15. Zhu C, Li X, Lin H, Zhong Z (2007) Geometric modeling and numerical simulation of the blood flow in human arterial system. In: Proceedings of the 2007 IEEE International conference on Robotics and Biomimetics
    16. Babak H, Sadeghipour MS (1994) Numerical analysis of the pulsative blood flow in deformable vessels. Curr Dev Numer Simul Flow Heat Transf 275:141-48
    17. Lee SW, Smith DS, Loth F, Fisher PF, Bassiouny HS (2007) Numerical and experimental simulation of transitional flow in a blood vessel junction. Numer Heat Transf 51:1-2 CrossRef
    18. Noguchi Y, Wishah MI (2003) Three-dimensional CFD modelling of blood flow through asymmetric stenosis. Comput Methods Exp Meas 4:567-74
    19. Dabiri Y, Fatouraee N, Katoozian H (2005) A computer simulation of blood flow in arterial networks, including blood non-Newtonian methods and arterial stenosis. In: Proceedings of the 2005 IEEE Engineering in Medicine and biology Annual Conference, Shangai, China
    20. Rudman M, Blackburn HM (2006) Direct numerical simulation of turbulent non-Newtonian flow using spectral element method. Appl Math Model 30:1229-248 CrossRef
    21. Naghavi MR, Navidbukhsh M (2005) Non-Newtonian behaviour of blood flow in 3D simulated model of carotid artery bifurcation. In: Proceedings of the 14th IASTED International Conference Applied Simulation and Modelling, Benalmadena, Spain
    22. Cole JS, Gillian MA, Raghunathan S (1999) Numerical simulations of time-dependent, non-Newtonian blood flow through typical human arterial bypass grafts. Dev Chem Eng Miner Process 7:179-00 CrossRef
    23. Politis AK, Stavropoulos GP, Christolis MN, Panagopoulos FG, Vlachos NS, Markatos NC (2007) Numerical modelling of simulated blood flow in idealized composite arterial coronary grafts: steady state simulations. J Biomech 40:1125-136 CrossRef
    24. Podyma M, Zbicinski I, Walecki J, Nowicki ML, Andziak P, Makowski P, Stefanczyk L (2006) Numerical analysis of blood flow in human abdominal aorta. Adv Fluid Mech 52:603-11
    25. Egelhoff CJ, Budwig RS, Foster JK, Hansen BL (2001) Investigation of coronary artery stenosis hemodynamics using experimental and computational models: influence of flow rate, size symmetry and wall roughness. In: Pr
  • 刊物类别:Computer Science
  • 刊物主题:Computer-Aided Engineering and Design
    Mathematical Applications in Chemistry
    Systems Theory and Control
    Calculus of Variations and Optimal Control
    Mechanics
    Applied Mathematics and Computational Methods of Engineering
  • 出版者:Springer London
  • ISSN:1435-5663
文摘
A high-order solver for the blood flow is developed and analyzed using a two-dimensional backward-facing step. In the first part, a Newtonian steady code to solve the incompressible Navier–Stokes (N–S) equations has been developed. The accuracy of the code is verified by comparing the results to the experimental results. An exact projection method/fractional-step scheme is used to solve the incompressible N–S equations. Convective terms of the N–S equations are solved using fifth-order WENO spatial operators, and for the diffusion terms, a sixth- order compact central difference scheme is employed. The third-order Runge–Kutta (R–K) explicit time-integrating scheme with total variation diminishing (TVD) is adopted for time discretization. In the second part, the pulsatile behavior of the Newtonian blood flow has been added to the initial program. Thirdly, the numerical code has been extended to include the steady and pulsatile effects in non-Newtonian blood flow. Finally, a practical example of bend tube has been analyzed by extending the two-dimensional code to 3D and the results are compared to already published data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700