Dispersion Relation Preserving Combined Compact Difference Schemes for Flow Problems
详细信息    查看全文
  • 作者:C. H. Yu ; Yogesh G. Bhumkar ; Tony W. H. Sheu
  • 关键词:Combined compact difference schemes ; Dispersion relation preserving schemes ; Lid driven cavity ; q ; waves ; Aliasing error
  • 刊名:Journal of Scientific Computing
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:62
  • 期:2
  • 页码:482-516
  • 全文大小:2,959 KB
  • 参考文献:1. Chiu, P.H., Sheu, T.W.H.: On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comput. Phys. 228, 3640-655 (2009) CrossRef
    2. Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211-218 (2007) CrossRef
    3. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262-81 (1993) CrossRef
    4. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16-2 (1992) CrossRef
    5. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677-94 (2003) CrossRef
    6. Sengupta, T.K., Sircar, S.K., Dipankar, A.: High accuracy schemes for DNS and acoustics. J. Sci. Comput. 26, 151-93 (2006) CrossRef
    7. Weinan, E., Liu, J.G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122-38 (1996) CrossRef
    8. Meitz, H.L., Fasel, H.F.: A compact-difference scheme for the Navier–Stokes equations in vorticity-velocity formulation. J. Comput. Phys. 157, 371-03 (2000) CrossRef
    9. Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183, 438-69 (2002) CrossRef
    10. Nagarajan, S., Lele, S.K.: A robust high order compact method for large eddy simulation. J. Comput. Phys. 191, 392-19 (2003) CrossRef
    11. Park, N., Yoo, J.Y., Choi, H.: Discretization errors in large eddy simulation: on the suitability of centered and upwind biased compact difference schemes. J. Comput. Phys. 198, 580-16 (2004) CrossRef
    12. Zhong, X.: High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys. 144, 662-09 (1998) CrossRef
    13. Sengupta, T.K., Rajpoot, M.K., Bhumkar, Y.G.: Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 144-54 (2011) CrossRef
    14. Ekaterinaris, J.A.: Implicit, high-resolution compact schemes for gas dynamics and aeroacoustics. J. Comput. Phys. 156, 272-99 (1999) CrossRef
    15. Shang, J.S.: High-order compact-difference schemes for time-dependent maxwell equations. J. Comput. Phys. 153, 312-33 (1999) CrossRef
    16. Zhou, Q., Yao, Z., He, F., Shen, M.Y.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comput. Phys. 227, 1306-339 (2007)
文摘
In this work, we have proposed two new combined compact difference (CCD) schemes for the solution of Navier–Stokes equations. These spatial discretization schemes have not only high spectral resolution for obtaining first and second derivative terms, but also have improved dispersion relation preserving properties when the fourth-order four-stage Runge–Kutta scheme is used for time integration. Out of the two proposed CCD schemes, the first scheme has upwind stencil, while the second scheme has a central stencil. Important numerical properties of these schemes have been analyzed and their effectiveness have been shown by solving the model wave equations, as well as Navier–Stokes equations. Results show that the upwind CCD scheme is suitable for high accuracy large eddy simulation of transitional and turbulent flowfields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700