A high-order multidimensional gas-kinetic scheme for hydrodynamic equations
详细信息    查看全文
  • 作者:Jun Luo (1)
    Kun Xu (1)
  • 关键词:WENO reconstruction ; gas ; kinetic schemes ; Euler ; Navier ; Stokes ; high ; order methods
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:56
  • 期:10
  • 页码:2370-2384
  • 全文大小:1137KB
  • 参考文献:1. Harten A, Engquist B, Osher S, et al. Uniformly high order essentially non-oscillatory schemes III. J Comput Phys, 1987, 71: 231鈥?03 CrossRef
    2. Shu C W, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes II. J Comput Phys, 1989, 83: 32鈥?8 CrossRef
    3. Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys, 1994, 115: 200鈥?12 CrossRef
    4. Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202鈥?28 CrossRef
    5. Xu K. Gas-Kinetic Schemes for Unsteady Compressible Flow Simulations. von Karman Institute report, Belgium, March 1998
    6. Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations, and its connection with artificial dissipation and Godunov method. J Comput Phys, 2001, 171: 289鈥?35 CrossRef
    7. Ohwada T, Fukata S. Simple derivation of high-resolution schemes for compressible flows by kinetic approach. J Comput Phys, 2006, 211: 424鈥?47 CrossRef
    8. Bhatnagar P L, Gross E P, Krook M. A Model for collision processes in gases I: Small amplitude processes in charged and neutral one-component systems. Phys Rev, 1954, 94: 511鈥?25 CrossRef
    9. Li J Q, Li Q B, Xu K. Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations. J Comput Phys, 2011, 230: 5080鈥?099 CrossRef
    10. Kumar G, Girimaji S S, Kerimo J. WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence. J Comput Phys, 2013, 234: 499鈥?23. CrossRef
    11. Li QB, Xu K, Fu S. A high-order gas-kinetic Navier-Stokes solver. J Comput Phys, 2010, 229: 6715鈥?731 CrossRef
    12. Ohwada T, Xu K. The kinetic scheme for full Burnett equations. J Comput Phys, 2004, 201: 315鈥?32 CrossRef
    13. Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Lecture Notes in Mathematics. Heidelberg: Springer, 1998
    14. Toro E. Riemann Solvers and Numerical Methods for Fluid Dynamics. Heidelberg: Springer, 1999 CrossRef
    15. Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math, 1954, 7: 159鈥?93 CrossRef
    16. Tang H Z, Liu TG. A note on the conservative schemes for the Euler equations. J Comput Phys, 2006, 218: 451鈥?59 CrossRef
    17. Woodward P, Colella P. Numerical simulations of two-dimensional fluid flow with strong shocks. J Comput Phys, 1984, 54: 115鈥?73 CrossRef
    18. Casper J. Finite-volume implementation of high-order essentially non-oscil latory schemes in two dimensions. AIAA J, 1992, 30: 2829鈥?835 CrossRef
    19. Su M D, Xu K, Ghidaoui M. Low speed flow simulation by the gas-kinetic scheme. J Comput Phys, 1999, 150: 17鈥?9 CrossRef
    20. Xu K, He X Y. Lattice Boltzmann method and Gas-kinetic BGK scheme in the low Mach number viscous flow simulations. J Comput Phys, 2003, 190: 100鈥?17 CrossRef
    21. Guo Z L, Liu H W, Luo L S, et al. A comparative study of the LBM and GKS methods for 2D near incompressible flows. J Comput Phys, 2008, 227: 4955鈥?976 CrossRef
    22. Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys, 1982, 48: 387鈥?11 CrossRef
    23. Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids, 1998, 27: 421鈥?33 CrossRef
    24. Titarev V A, Toro E F. Finite-volume WENO schemes for three-dimensional conservation laws. J Comput Phys, 2004, 201: 238鈥?60 CrossRef
  • 作者单位:Jun Luo (1)
    Kun Xu (1)

    1. Mathematics Department, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
  • ISSN:1869-1900
文摘
This paper concerns the development of high-order multidimensional gas kinetic schemes for the Navier-Stokes solutions. In the current approach, the state-of-the-art WENO-type initial reconstruction and the gas-kinetic evolution model are used in the construction of the scheme. In order to distinguish the physical and numerical requirements to recover a physical solution in a discretized space, two particle collision times will be used in the current high-order gas-kinetic scheme (GKS). Different from the low order gas dynamic model of the Riemann solution in the Godunov type schemes, the current method is based on a high-order multidimensional gas evolution model, where the space and time variation of a gas distribution function along a cell interface from an initial piecewise discontinuous polynomial is fully used in the flux evaluation. The high-order flux function becomes a unification of the upwind and central difference schemes. The current study demonstrates that both the high-order initial reconstruction and high-order gas evolution model are important in the design of a high-order numerical scheme. Especially, for a compact method, the use of a high-order local evolution solution in both space and time may become even more important, because a short stencil and local low order dynamic evolution model, i.e., the Riemann solution, are contradictory, where valid mechanism for the update of additional degrees of freedom becomes limited.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700