Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia
详细信息    查看全文
  • 作者:Imen Hassen ; Fadoua Hamzaoui-Azaza…
  • 关键词:Groundwater quality ; Hydrogeochemistry ; Multivariate analysis ; Geochemical modelling ; Stable isotopes ; Oum Ali ; Thelepte
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:188
  • 期:3
  • 全文大小:5,486 KB
  • 参考文献:Abid, K., Trabelsi, R., Zouari, K., & Abidi, B. (2009). Caractérisation hydrogéochimique de la nappe du continental intercalaire (sud tunisien) [Hydrogeochemical characterization of the continental intercalaire aquifer (southern Tunisia)]. Hydrological Sciences Journal, 54(3), 526–537. doi:10.​1623/​hysj.​54.​3.​526 .CrossRef
    Adams, S., Titus, R., Piertersen, K., Tresdoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.CrossRef
    Aghazadeh, N., & Mogaddam, A. A. (2010). Assessment of groundwater quality and its suitability for dinking and agriculture uses in the Oshnavieh area, northwest of Iran. Journal of Environmental Protection, 1, 30–40.CrossRef
    AL-Charideh, A., Abou-Zakhem, B., AL-Charideh, A., & Abou-Zakhem, B. (2009). Geochemical and isotopic characterization of groundwater from the Paleogene limestone aquifer of the Upper Jezireh, Syria. Environmental Earth Science, 59, 1065–1078.CrossRef
    APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: American public Health Association.
    Avvannavar, S. M., & Shrihari, S. (2008). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring Assessment, 143, 279–290.CrossRef
    Banoeng-Yakubo, B., Mark Yidana, S., & Nti, E. (2008). An evaluation of the genesis and suitability of groundwater for irrigation in the Volta Region, Ghana. Environmental Geology, 57, 1005–1010.CrossRef
    Belkhiri, L., Mouni, L., & Boudoukha, A. (2012). Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. Environmental Earth Science, 67, 46–55.
    Ben Alaya, M., Abidi, S., Zemni, T., & Zargouni, F. (2014). Suitability assessment of deep groundwater for drinking and irrigation use in the Djeffara aquifers (Northern Gabes, south-eastern Tunisia). Environmental Earth Science, 71, 3387–3421.CrossRef
    Berkaloff, E. (1931). Etude hydrogéologique de la plaine de Foussana. Tunisia: Bureau de l’Inventaire des Ressources Hydrauliques.
    Blanchette, D., Lefebvre, R., & Nastev, M. (2010). Groundwater quality, geochemical processes and groundwater evolution in the Chateauguay River watershed, Quebec, Canada. Canadian Water Resource Journal, 35(4), 503–526.CrossRef
    Bouzourra, H., Bouhlila, R., Elango, L., Slama, F., & Ouslati, N. (2014). Characterization of mechanisms and processes of groundwater stalinization in irrigated coastal area using statistics, GIS and hydrochemical investigations. Environmental Science Pollution Research. doi:10.​1007/​s11356-014-3428-0 .
    Bru, K., Guézennec, A. G., Lanini, S., Graveline, N., Soulis, K., Karaouli, F., & Guesmi, A. (2008). Model development for integrated water management in the influence area of phosphate mines. International Congress on Environmental Modelling and Software, 606–613.
    Burollet, P. F. (1956). Contribution à l’étude stratigraphique de la Tunisie Centrale. Tunisia: Annuaire Géologique des Mines.
    Carrier, M. A., Lefebvre, R., & Rivard, C. (2013). Portrait des ressources en eaux souterraines en Montérégie Est, Québec, Canada [Groundwater resource portrait in Montérégie Est, Québec, Canada]. Joint project between INRS, GSC-Québec, OBV Yamaska and IRDA within the Québec Groundwater Characterization program. Final report INRS R-1433, INRS, Quebec City, QB.
    Cerling, T. E., Pederson, B. L., & Damm, K. L. V. (1989). Sodium calcium ion exchange in the weathering of shale: implications of global weathering budgets. Geology, 17, 552–554.CrossRef
    Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeology Journal, 7, 431–439.CrossRef
    Chung, S. Y., Venkatramanan, S., Kim, T. H., Kim, D. S., & Ramkumar, T. (2014). Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea. Environmental Development and Sustainability. doi:10.​1007/​s10668-014-9552-7 .
    Cloutier, V., Lefebvre, R., & Savard, M. (2006). Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Journal of Hydrogeology, 14(4), 573–590.CrossRef
    Craig, H. (1961). Isotopic variation in meteoric waters. Science, 133, 1702–1703.CrossRef
    Davis, J. C. (1986). Statistics and data analysis in geology. Wiley.
    Degalier, R. (1952). La nappe miocène de la Tunisie Centrale. Tunisia: Annuaire Géologique des Mines.
    DGRE (Direction Générale des Ressources en Eaux). (2006). Annuaire pluviométrique de la Tunisie, Tunisia.
    Diary, A. (2007). Groundwater quality evaluation in Katar Town-Sulaimani/NE-Iraq. Iraqi Journal of Earth Sciences, 7, 31–52.
    Edumnds, W., Guendouz, A., Mamou, A., Moulla, A., Shand, P., & Zouari, K. (2003). Groundwater evolution in the continental intercalary aquifer of southern Algeria and Tunisia, trace element and isotopic indicators. Applied Geochemistry, 18, 805–822.CrossRef
    Faure, G. (1986). Principles of isotope geology. New York: Wiley.
    Faye, S., Maloszewski, P., Stichler, W., Trimborn, P., Cissé Faye, S., & Cissé Faye, S. (2005). Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Science of the Total Environment, 343, 243–259.CrossRef
    Fisher, R. S., & Mulican, W. F. (1997). Hydrochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the northern Chihuahuan desert, trans-Pecos, Texas, USA. Hydrogeology Journal, 5, 4–16.CrossRef
    Fontes, J. C., Coque, R., Dever, L., Filly, A., & Mamou, A. (1983). Paléo hydrologie isotopique de l’wadi el Akarit (sud tunisien) au Pléistocène et à l’Holocène. Pal Pal Pal, 43, 41–61.CrossRef
    Freez, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice Hall, Inc.
    Gat, J. R., & Carmi, I. (1970). Evolution of the isotopic composition of atmospheric water in the Mediterranean Sea area. Journal of Geophysical Research, 75, 3039–3048.CrossRef
    Gat, J. R., & Dansgaard, W. (1972). Stable isotope survey of the freshwater occurrence in Israel and northern Jordan rift valley. Journal of Hydrology, 16, 177–212.CrossRef
    Gibbs, R. J. (1970). Mechanism controlling world water chemistry. Science, 170, 1088–1090.CrossRef
    Gonfiantini, R., Conrad, G., Fontes, J. C., Sauzy, G., & Payne, B. R. (1974). Etude isotopique de la nappe du continental intercalaire et de ses relations avec les autres nappes du Sahara septentrional. In Isotope Techniques in groundwater hydrology (pp. 227–241). Proc Symp IAEA Vienna I
    Guendouz, A., Moulla, A. S., Edmunds, W. M., Zouari, K., Shand, P., & Mamou, A. (2003). Hydrogeochemical and isotopic evolution of water in the complex terminal aquifer in the Algerian Sahara. Journal of Hydrology, 11, 483–495.
    Halim, M. A., Majumder, R. K., Nessa, S. A., Hiroshiro, Y., Sasaki, K., Saha, B. B., Saepuloh, A., & Jinno, K. (2010). Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment. Journal of Hazardous Materials, 180, 50–62.CrossRef
    Hamed, Y., & Dahri, F. (2013). Hydro-geochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in northwestern Tunisia. Journal of African Earth Science, 83, 10–24.CrossRef
    Hamed, Y., Demdoum, A., Al-Gamal, S. A., Bouri, S., & Ben Dhia, H. (2012). Groundwater recharge areas of the Continental Intercalaire aquifer—hydrogeochemical and environmental isotopes: southern Tunisia and Algeria. Quaternary International. doi:10.​1016/​j.​quaint.​2012.​11.​011 .
    Hamed, Y., Ahmadi, R., Demdoum, A., Bouri, S., Gargouri, I., Ben Dhia, H., Al-Gamal, S., Laouar, R., & Choura, A. (2014). Use of geochemical, isotopic, and age tracer data to develop models of groundwater flow: a case study of Gafsa mining basin-southern Tunisia. Journal of African Earth Science, 100, 418–436.CrossRef
    Hamzaoui-Azaza, F., Ketata, M., Bouhlila, R., & Gueddari, M. (2011). Hydrochemical evolution and evolution of drinking water quality in Zeuss-Koutine aquifer, south-eastern of Tunisia. Environmental Monitoring and Assessment, 174, 283–298.CrossRef
    Hamzaoui-Azaza, F., Ameur, M., Bouhlila, R., & Gueddari, M. (2012). Geochemical Characterization of groundwater in a Miocene aquifer, southeastern Tunisia. Environmental and Engineering Geoscience, 18, 159–174.CrossRef
    Hamzaoui-Azaza, F., Tlili-Zrelli, B., Bouhlila, R., & Gueddari, M. (2013). An integrated statistical methods and modeling minerals-water interaction to identifying hydrochemical processes in groundwater in southern Tunisia. Chemical Speciation and Bioavailability, 25(3), 165–178.CrossRef
    Hassen, I. (2013). Modélisation hydrogéologique des nappes de Kasserine. Master thesis, University of Tunis el Manar, Tunisia.
    Hassen, I., Bouhlila, R., Hamzaoui-Azaza, F., & Khanfir, R. (2014). Hydrogeological modeling of Kasserine aquifer system, central Tunisia. In 10th International Hydrogeological Congress of Greece/Thessaloniki (pp. 223–230).
    Hounslow, A. W. (1995). Water quality data. Analysis and interpretation. New York: Lewis.
    Jalali, M. (2007). Stalinization of groundwater in arid and semiarid zones: an example from Tajarak, western Iran. Environmental Geology, 52, 1133–1149.CrossRef
    Jalali, M. (2009). Geochemistry characterization of groundwater in an agriculture area of Razan, Hamadan, Iran. Environmental Geology, 56, 1479–1488.CrossRef
    Jamieson, D. G., & Fedra, K. (1996). The “water ware” decision-support system for river-basin planning. 1. Conceptual design. Journal of Hydrology, 177(3–4), 163–175.CrossRef
    Karanth, K. R. (1987). Ground water assessment, development and management. New Delhi: Tata McGraw Hill.
    Khanfir, R. (1980). Contribution à l’étude hydrogéologique de la région d’Oum Ali Thelepte (Kasserine). Ph.D. Thesis, University of Pierre and Marie Curie, France.
    Kim, J. H., Kim, R. H., Lee, J., Chenong, T. J., Yum, B. W., & Chang, H. W. (2005). Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal are of Kimje, South Korea. Hydrogeological Processes, 19, 1261–1276.CrossRef
    Kumar, M. (2004). An integrated hydrochemical and isotopic study of NCR-Delhi, India [in English]. Mphil. Jawaharal Nehru University.
    Kumar, M., Kumari, K., Ramanathan, A., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environmental Geology, 53, 553–574.CrossRef
    Langmuir, P. (1997). Aqueous environmental geochemistry. Upper Saddle River: Prentice-Hall.
    Larocque, M., Gagné, S., & Tremblay, L. (2013). Projet de connaissances des eaux souterraines du bassin versant de la rivière Bécancour et de la MRC de Bécancour: rapport synthèse [Groundwater resources project in the watershed of Bécancour River and RCM of Bécancour: final report]. Report, Quebec Ministry of Environment, Wildlife and Parks, Quebec City, QB, 62 pp.
    Leblanc, Y., Légaré, G., & Lacasse, A. (2013). Caractérisation hydrogéologique du sud-ouest de la Mauricie [Hydrogeologic characterization of south-west Mauricie]. Report submitted to the provincial Quebec Ministry of Environment, Wildlife and Parks, Dépt. des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QB, 134 pp.
    Lecomte, K., Pasquini, A., & Depetris, P. (2005). Minerals weathering in a semiarid mountain river: its assessment through PHREEQC inverse modeling. Aquatic Geochemistry, 11, 173–194.CrossRef
    Li, P., Qian, H., & Wu, J. (2011). Hydrochemical characteristics and evolution laws of drinking groundwater in Pengyang County, Ningxia, Northwest China. E-Journal of Chemistry, 8(2), 565–575. doi:10.​1155/​2011/​472085 .CrossRef
    Li, P., Wu, J., & Qian, H. (2012). Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China. Environmental Monitoring and Assessment, 184(8), 4841–4854. doi:10.​1007/​s10661-011-2306-1 .CrossRef
    Li, P., Wu, J., & Qian, H. (2013a). Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environmental Earth Science, 69, 2211–2225.CrossRef
    Li, P., Qian, H., Wu, J., Zhang, Y., & Zhang, H. (2013b). Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water and the Environment, 32, 195–206.CrossRef
    M’Barek, J. (1981). Contribution à l’étude hydrogéologique de la plaine d’effondrement de Kasserine. PhD Thesis, University of Bordeaux I, France.
    Maria, R., & Schumann, A. H. (2007). DSS application to development of water management strategies in Ribeiras do Algarve River basin. Water Resources Management, 21, 897–907.CrossRef
    Maya, A. L., & Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch range, Utah. Journal of Hydrology, 172, 31–59.CrossRef
    Meng, S. X., & Maynard, J. B. (2001). Use of statistical analysis to formulate conceptual models of geochemical behaviour: water chemical data from the Botucatu aquifer in Sao Paulo state, Brazil. Journal of Hydrology, 250, 78–97.CrossRef
    Mishra, P. C., & Patel, R. K. (2001). Study of the pollution load in the drinking water of Rairangpur. A small tribal dominated town of North Orissa. Indian Journal of Environment and Ecoplanning, 5(2), 293–298.
    Montcoudiol, N., Molson, J., & Lemieu, J. M. (2014). Groundwater geochemistry of the Outaouais region (Québec, Canada): a regional-scale study. Hydrogeology Journal. doi:10.​1007/​s10040-014-1190-5 .
    Mysiak, J., Guipponi, C., & Rosato, P. (2005). Towards the development of a decision support system for water resource management. Environmental Modelling and Software, 20(2), 203–214.CrossRef
    Ochsenkuehn, K. M., Kontoyannakos, J., & Ochsenkuehn, P. M. (1997). A new approach to a hydrochemical study of groundwater flow. Journal of Hydrology, 194(1–4), 64–75.CrossRef
    Papatheodorou, G., Lambrakis, N., & Panagopoulos, G. (2007). Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrological Processes Journal, 21(11), 1482–1495.CrossRef
    Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2): a computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations. US Geol. Surv. Water Resour. Inverst. Rep.
    Qian, H., Li, P., Wu, J., & Zhou, Y. (2013). Isotopic characteristics of precipitation, surface and ground waters in the Yinchuan Plain, Northwest China. Environmental Earth Sciences, 70(1), 57–70. doi:10.​1007/​s12665-012-2103-3 .CrossRef
    Ragunath, H. M. (1987). Groundwater. New Delhi: Wiley Eastern Ltd.
    Ramesh, K., & Elango, L. (2011). Groundwater quality and its suitability for domestic and agricultural use in Tondiar River basin, Tamil Nadu, India. Environmental Monitoring Assessment. doi:10.​1007/​s10661-011-2231-3 .
    Richards, L. A. (1954). Diagnosis and improvement of saline alkali soils. US Department of Agriculture, Hand Book.
    Sacks, L. A., & Tihansky, A. B. (1996). Geochemical and isotopic composition of ground water, with emphasis on sources of sulfate, in the Upper Floridan Aquifer and Intermediate Aquifer System in southwest Florida. USGS, Washington, DC.
    Saeedi, M., Sharifi, O. A., & Meraji, H. (2010). Development of groundwater quality index. Environmental Monitoring Assessment, 163, 327–335.CrossRef
    Sahu, P., & Sikdar, P. K. (2008). Hydrochemical framework of the aquifer in and around East Kolkata wetlands, West Bengal, India. Environmental Geology, 55, 823–835.CrossRef
    Singh, D. F. (1992). Studies on the water quality index of some major rivers of Pune, Maharashtra. Academic Proceeding Environmental Biology, 1(1), 61–66.
    Srinivasamoorthy, K., Chidambaram, S., Prasanna, M. V., Vasanthavihar, M., Peter, J., & Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain—a case study from Mettur taluk, Salem district, Tamil Nadu, India. Journal of Earth System Science, 117, 49–58.CrossRef
    Stimson, J., Frape, S., Drimmie, R., & Rudolph, D. (2001). Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valey, Bolivia. Applied Geochemistry, 16, 1097–1114.CrossRef
    Strohl, R., & Degalier, R. (1946). Etude hydrogéologique de la région de Feriana. Report, Tunisia.
    SubbaRao, N. (1997). Studies on water quality index in hard rock terrain of Guntur District, Andhra Pradesh, India. In National Seminar on Hydrology of Precambrian Terrains and Hard Rock Areas, (pp. 129–134).
    Subyani, A. M. (2004). Use of chloride mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Qadi Tharad, western Saudi Arabia. Environmental Geology, 46, 741–749.CrossRef
    Talbot Poulin, MC., Comeau, G., Tremblay, Y. (2013). Projet d’acquisition de connaissances sur les eaux souterraines du territoire de la Communauté Métropolitaine de Québec [Groundwater characterisation program in Québec City]. Final report, Dépt. De géologie et de génie géologique, Université Laval, Laval, QB, 172 pp
    Tiwari, T. N., & Mishra, M. A. (1985). A preliminary assignment of water quality index of major Indian rivers. Indian Journal of Environmental Protection, 5, 276–279.
    Tlili-Zrelli, B., Hamzaoui-Azaza, F., Gueddari, M., & Bouhlila, R. (2013). Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (northeastern Tunisia). Arabian Journal of Geosciences, 6, 3545–3561.CrossRef
    USSL. (1954). Diagnosis and improvement of saline and alkali soils. USDA. Handbook.
    Varol, S., & Davraz, A. (2014). Evaluation of the groundwater quality with WQI (water quality index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environmental Earth Science. doi:10.​1007/​s12665-014-3531-z .
    Vungopal, T. (2009). Environmental impact assessment and seasonal variation study of the groundwater in the vicinity of river of the Adyar, Chennai, India. Environmental Monitoring Assessment, 149, 81–97.CrossRef
    Wen, X. H., Wu, Y. Q., & Wu, J. (2008). Hydrochemical characteristics of groundwater in the Zhangye basin, Northwestern China. Environmental Geology, 55, 1713–124.CrossRef
    Wilcox, L. V. (1955). Classification and use of irrigation water, circular 969. Washington, DC, USA.
    World Health Organization (WHO). (2004). Guidelines for drinking water quality, vol. 1 recommendations (3rd). Geneva: WHO
    World Health Organization (WHO). (2008). Guidelines for drinking water quality, vol. 1 recommendations (3rd). Geneva: WHO.
    Wu, J., Li, P., Qian, H., Duan, Z., & Zhang, X. (2014). Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences, 7, 3973–3982.CrossRef
    Yangui, H., Zouari, K., & Rozanski, K. (2011). Hydrochemical and isotopic study of groundwater in Wadi El Hechim-Garaa Hamra basin, central Tunisia. Environmental Earth Science, 66, 1359–1370.CrossRef
    Yidana, S. M., & Yidaa, A. (2010). An assessment of the origin and variation of groundwater salinity in southeastern Ghana. Environmental Earth Science, 61, 1259–1273.CrossRef
    Yidana, S. M., Bruce Banoeng, Y., & Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58, 220–234.CrossRef
    Zouari, K., Trabelsi, R., & Abid, K. (2005) Chemical and isotopic composition of rain water of station of Sfax. Tunisia. In Workshop on Chemical and isotopic composition of Rain Water of some Arab countries Beyrouth, Liban 25–26 December 2005.
  • 作者单位:Imen Hassen (1)
    Fadoua Hamzaoui-Azaza (2)
    Rachida Bouhlila (1)

    1. Modeling Hydraulic and Environmental Laboratory, National Engineering School of Tunis, University of Tunis El Manar, BP 37, Belvedere, 1002, Tunis, Tunisia
    2. Research Unit of Geochemistry and Environmental Geology, Department of Geology, Faculty of Mathematical, Physical and Natural Sciences, University Campus, Tunis, Tunisia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Ecology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-2959
文摘
Groundwater plays a dominant role in arid regions; it is among the most available water resources in Tunisia. Located in northwestern Tunisia, Oum Ali-Thelepte is a deep Miocene sedimentary aquifer, where groundwater is the most important source of water supply. The aim of the study is to investigate the hydrochemical processes leading to mineralization and to assess water quality with respect to agriculture and drinking for a better management of groundwater resources. To achieve such objectives, water analysis was carried out on 16 groundwater samples collected during January–February 2014. Stable isotopes and 26 hydrochemical parameters were examined. The interpretation of these analytical data showed that the concentrations of major and trace elements were within the permissible level for human use. The distribution of mineral processes in this aquifer was identified using conventional classification techniques, suggesting that the water facies gradually changes from Ca–HCO3 to Mg–SO4 type and are controlled by water–rock interaction. These results were endorsed using multivariate statistical methods such as principal component analysis and cluster analysis. The sustainability of groundwater for drinking and irrigation was assessed based on the water quality index (WQI) and on Wilcox and Richards’s diagrams. This aquifer has been classified as “excellent water” serving good irrigation in the area. As for the stable isotope, the measurements showed that groundwater samples lay between global meteoric water line (GMWL) and LMWL; hence, this arrangement signifies that the recharge of the Oum Ali-Thelepte aquifer is ensured by rainwater infiltration through mountains in the border of the aquifer without evaporation effects. Keywords Groundwater quality Hydrogeochemistry Multivariate analysis Geochemical modelling Stable isotopes Oum Ali-Thelepte

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700