Temporal order of bipolar cell genesis in the neural retina
详细信息    查看全文
  • 作者:Eric M Morrow (1) (2)
    C-M Amy Chen (3)
    Constance L Cepko (4)
  • 刊名:Neural Development
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:3
  • 期:1
  • 全文大小:1503KB
  • 参考文献:1. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D: lass="a-plus-plus">Cell fate determination in the vertebrate retina. / Proceedings of the National Academy of Sciences of the United States of America 1996,lass="a-plus-plus">93(2)lass="a-plus-plus">:589鈥?95. lass="external" href="http://dx.doi.org/10.1073/pnas.93.2.589">CrossRef
    2. Poggi L, Zolessi FR, Harris WA: lass="a-plus-plus">Time-lapse analysis of retinal differentiation. / Current opinion in cell biology 2005,lass="a-plus-plus">17(6)lass="a-plus-plus">:676鈥?81. lass="external" href="http://dx.doi.org/10.1016/j.ceb.2005.09.004">CrossRef
    3. Sernagor E, Eglen S, Harris B, Wong R: / Retinal development. Cambridge ; New York , Cambridge University Press; 2006:xvi, 383 p., [8] p. of plates.
    4. Dowling JE: / The retina : an approachable part of the brain. Cambridge, Mass. , Belknap Press of Harvard University Press; 1987:xii, 282 p., [4] p. of plates.
    5. Mumm JS, Godinho L, Morgan JL, Oakley DM, Schroeter EH, Wong RO: lass="a-plus-plus">Laminar circuit formation in the vertebrate retina. / Progress in brain research 2005, lass="a-plus-plus">147:155鈥?69. lass="external" href="http://dx.doi.org/10.1016/S0079-6123(04)47012-5">CrossRef
    6. Wassle H: lass="a-plus-plus">Parallel processing in the mammalian retina. / Nature reviews 2004,lass="a-plus-plus">5(10)lass="a-plus-plus">:747鈥?57. lass="external" href="http://dx.doi.org/10.1038/nrn1497">CrossRef
    7. MacNeil MA, Masland RH: lass="a-plus-plus">Extreme diversity among amacrine cells: implications for function. / Neuron 1998,lass="a-plus-plus">20(5)lass="a-plus-plus">:971鈥?82. lass="external" href="http://dx.doi.org/10.1016/S0896-6273(00)80478-X">CrossRef
    8. Ghosh KK, Bujan S, Haverkamp S, Feigenspan A, Wassle H: lass="a-plus-plus">Types of bipolar cells in the mouse retina. / The Journal of comparative neurology 2004,lass="a-plus-plus">469(1)lass="a-plus-plus">:70鈥?2. lass="external" href="http://dx.doi.org/10.1002/cne.10985">CrossRef
    9. Tom Dieck S, Brandstatter JH: lass="a-plus-plus">Ribbon synapses of the retina. / Cell and tissue research 2006,lass="a-plus-plus">326(2)lass="a-plus-plus">:339鈥?46. lass="external" href="http://dx.doi.org/10.1007/s00441-006-0234-0">CrossRef
    10. Haverkamp S, Ghosh KK, Hirano AA, Wassle H: lass="a-plus-plus">Immunocytochemical description of five bipolar cell types of the mouse retina. / The Journal of comparative neurology 2003,lass="a-plus-plus">455(4)lass="a-plus-plus">:463鈥?76. lass="external" href="http://dx.doi.org/10.1002/cne.10491">CrossRef
    11. Famiglietti EV Jr., Kolb H: lass="a-plus-plus">Structural basis for ON-and OFF-center responses in retinal ganglion cells. / Science 1976,lass="a-plus-plus">194(4261)lass="a-plus-plus">:193鈥?95. lass="external" href="http://dx.doi.org/10.1126/science.959847">CrossRef
    12. Roe T, Reynolds TC, Yu G, Brown PO: lass="a-plus-plus">Integration of murine leukemia virus DNA depends on mitosis. / The EMBO journal 1993,lass="a-plus-plus">12(5)lass="a-plus-plus">:2099鈥?108.
    13. Young RW: lass="a-plus-plus">Cell proliferation during postnatal development of the retina in the mouse. / Brain research 1985,lass="a-plus-plus">353(2)lass="a-plus-plus">:229鈥?39.
    14. Alexiades MR, Cepko C: lass="a-plus-plus">Quantitative analysis of proliferation and cell cycle length during development of the rat retina. / Dev Dyn 1996,lass="a-plus-plus">205(3)lass="a-plus-plus">:293鈥?07. lass="external" href="http://dx.doi.org/10.1002/(SICI)1097-0177(199603)205:3<293::AID-AJA9>3.0.CO;2-D">CrossRef
    15. Morrow EM, Belliveau MJ, Cepko CL: lass="a-plus-plus">Two phases of rod photoreceptor differentiation during rat retinal development. / J Neurosci 1998,lass="a-plus-plus">18(10)lass="a-plus-plus">:3738鈥?748.
    16. Liu IS, Chen JD, Ploder L, Vidgen D, van der Kooy D, Kalnins VI, McInnes RR: lass="a-plus-plus">Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. / Neuron 1994,lass="a-plus-plus">13(2)lass="a-plus-plus">:377鈥?93. lass="external" href="http://dx.doi.org/10.1016/0896-6273(94)90354-9">CrossRef
    17. Rowan S, Cepko CL: lass="a-plus-plus">Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. / Developmental biology 2004,lass="a-plus-plus">271(2)lass="a-plus-plus">:388鈥?02. lass="external" href="http://dx.doi.org/10.1016/j.ydbio.2004.03.039">CrossRef
    18. Euler T, Wassle H: lass="a-plus-plus">Immunocytochemical identification of cone bipolar cells in the rat retina. / The Journal of comparative neurology 1995,lass="a-plus-plus">361(3)lass="a-plus-plus">:461鈥?78. lass="external" href="http://dx.doi.org/10.1002/cne.903610310">CrossRef
    19. Young RW: lass="a-plus-plus">Cell differentiation in the retina of the mouse. / The Anatomical record 1985,lass="a-plus-plus">212(2)lass="a-plus-plus">:199鈥?05. lass="external" href="http://dx.doi.org/10.1002/ar.1092120215">CrossRef
    20. Carter-Dawson LD, LaVail MM: lass="a-plus-plus">Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. / The Journal of comparative neurology 1979,lass="a-plus-plus">188(2)lass="a-plus-plus">:263鈥?72. lass="external" href="http://dx.doi.org/10.1002/cne.901880205">CrossRef
    21. Holt CE, Bertsch TW, Ellis HM, Harris WA: lass="a-plus-plus">Cellular determination in the Xenopus retina is independent of lineage and birth date. / Neuron 1988,lass="a-plus-plus">1(1)lass="a-plus-plus">:15鈥?6. lass="external" href="http://dx.doi.org/10.1016/0896-6273(88)90205-X">CrossRef
    22. Rapaport DH, Rakic P, LaVail MM: lass="a-plus-plus">Spatiotemporal gradients of cell genesis in the primate retina. / Perspectives on developmental neurobiology 1996,lass="a-plus-plus">3(3)lass="a-plus-plus">:147鈥?59.
    23. Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM: lass="a-plus-plus">Timing and topography of cell genesis in the rat retina. / The Journal of comparative neurology 2004,lass="a-plus-plus">474(2)lass="a-plus-plus">:304鈥?24. lass="external" href="http://dx.doi.org/10.1002/cne.20134">CrossRef
    24. Fei Y: lass="a-plus-plus">Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice. / Molecular vision [electronic resource] 2003, lass="a-plus-plus">9:31鈥?2.
    25. Alexiades MR, Cepko CL: lass="a-plus-plus">Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. / Development (Cambridge, England) 1997,lass="a-plus-plus">124(6)lass="a-plus-plus">:1119鈥?131.
    26. Belliveau MJ, Cepko CL: lass="a-plus-plus">Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. / Development (Cambridge, England) 1999,lass="a-plus-plus">126(3)lass="a-plus-plus">:555鈥?66.
    27. Sherry DM, Wang MM, Bates J, Frishman LJ: lass="a-plus-plus">Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits. / The Journal of comparative neurology 2003,lass="a-plus-plus">465(4)lass="a-plus-plus">:480鈥?98. lass="external" href="http://dx.doi.org/10.1002/cne.10838">CrossRef
    28. Rich KA, Zhan Y, Blanks JC: lass="a-plus-plus">Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. / The Journal of comparative neurology 1997,lass="a-plus-plus">388(1)lass="a-plus-plus">:47鈥?3. lass="external" href="http://dx.doi.org/10.1002/(SICI)1096-9861(19971110)388:1<47::AID-CNE4>3.0.CO;2-O">CrossRef
    29. Wassle H, Regus-Leidig H, Haverkamp S: lass="a-plus-plus">Expression of the vesicular glutamate transporter vGluT2 in a subset of cones of the mouse retina. / The Journal of comparative neurology 2006,lass="a-plus-plus">496(4)lass="a-plus-plus">:544鈥?55. lass="external" href="http://dx.doi.org/10.1002/cne.20942">CrossRef
    30. Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, Furukawa T: lass="a-plus-plus">Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. / Nature neuroscience 2003,lass="a-plus-plus">6(12)lass="a-plus-plus">:1255鈥?263. lass="external" href="http://dx.doi.org/10.1038/nn1155">CrossRef
    31. Hsiau TH, Diaconu C, Myers CA, Lee J, Cepko CL, Corbo JC: lass="a-plus-plus">The cis-regulatory logic of the mammalian photoreceptor transcriptional network. / PLoS ONE 2007,lass="a-plus-plus">2(7)lass="a-plus-plus">:e643. lass="external" href="http://dx.doi.org/10.1371/journal.pone.0000643">CrossRef
    32. Bao ZZ, Cepko CL: lass="a-plus-plus">The expression and function of Notch pathway genes in the developing rat eye. / J Neurosci 1997,lass="a-plus-plus">17(4)lass="a-plus-plus">:1425鈥?434.
    33. Turner DL, Cepko CL: lass="a-plus-plus">A common progenitor for neurons and glia persists in rat retina late in development. / Nature 1987,lass="a-plus-plus">328(6126)lass="a-plus-plus">:131鈥?36. lass="external" href="http://dx.doi.org/10.1038/328131a0">CrossRef
    34. Chen CM, Cepko CL: lass="a-plus-plus">The chicken RaxL gene plays a role in the initiation of photoreceptor differentiation. / Development (Cambridge, England) 2002,lass="a-plus-plus">129(23)lass="a-plus-plus">:5363鈥?375.
    35. Molday RS, MacKenzie D: lass="a-plus-plus">Monoclonal antibodies to rhodopsin: characterization, cross-reactivity, and application as structural probes. / Biochemistry 1983,lass="a-plus-plus">22(3)lass="a-plus-plus">:653鈥?60. lass="external" href="http://dx.doi.org/10.1021/bi00272a020">CrossRef
  • 作者单位:Eric M Morrow (1) (2)
    C-M Amy Chen (3)
    Constance L Cepko (4)

    1. Division of Genetics, Children's Hospital Boston, Harvard Medical School, New Research Building, 77 Avenue Louis Pasteur, 02115, Boston, MA, USA
    2. Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, 02114, Boston, MA, USA
    3. Novartis Institute for Biomedical Research, 500 Technology Square, 02139, Cambridge, MA, USA
    4. Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Avenue Louis Pasteur, New Research Building, 77 Avenue Louis Pasteur, 02115, Boston, MA, USA
文摘
Background Retinal bipolar cells comprise a diverse group of neurons. Cone bipolar cells and rod bipolar cells are so named for their connections with cone and rod photoreceptors, respectively. Morphological criteria have been established that distinguish nine types of cone bipolar cells and one type of rod bipolar cell in mouse and rat. While anatomical and physiological aspects of bipolar types have been actively studied, little is known about the sequence of events that leads to bipolar cell type specification and the potential relationship this process may have with synapse formation in the outer plexiform layer. In this study, we have examined the birth order of rod and cone bipolar cells in the developing mouse and rat in vivo. Results Using retroviral lineage analysis with the histochemical marker alkaline phosphatase, the percentage of cone and rod bipolar cells born on postnatal day 0 (P0), P4, and P6 were determined, based upon the well characterized morphology of these cells in the adult rat retina. In this in vivo experiment, we have demonstrated that cone bipolar genesis clearly precedes rod bipolar genesis. In addition, in the postnatal mouse retina, using a combination of tritiated-thymidine birthdating and immunohistochemistry to distinguish bipolar types, we have similarly found that cone bipolar genesis precedes rod bipolar genesis. The tritiated-thymidine birthdating studies also included quantification of the birth of all postnatally generated retinal cell types in the mouse. Conclusion Using two independent in vivo methodologies in rat and mouse retina, we have demonstrated that there are distinct waves of genesis of the two major bipolar cell types, with cone bipolar genesis preceding rod bipolar genesis. These waves of bipolar genesis correspond to the order of genesis of the presynaptic photoreceptor cell types.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700