Blood–brain barrier and bloodcerebrospinal fluid barrier in normal and pathological conditions
详细信息    查看全文
  • 作者:Masaki Ueno ; Yoichi Chiba ; Ryuta Murakami ; Koichi Matsumoto…
  • 关键词:Blood–brain barrier ; Bloodcerebrospinal fluid barrier ; Glymphatic pathway ; Perivascular drainage pathway
  • 刊名:Brain Tumor Pathology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:33
  • 期:2
  • 页码:89-96
  • 全文大小:746 KB
  • 参考文献:1.Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood
    ain barrier to exogenous peroxidase. J Cell Biol 34:207–217CrossRef PubMed PubMedCentral
    2.Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677CrossRef PubMed PubMedCentral
    3.Davson H, Welch K, Segal MB (1987) Morphological aspects of the barriers. In: Davson H, Welch K, Segal MB (eds) Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh, pp 105–188
    4.Brightman MW, Klatzo I, Olsson Y, Reese TS (1970) The blood
    ain barrier to proteins under normal pathological conditions. J Neurol Sci 10:215–239CrossRef PubMed
    5.Broadwell RD, Sofroniew MV (1993) Serum proteins bypass the blood
    ain fluid barriers for extracellular entry to the central nervous system. Exp Neurol 120:245–263CrossRef PubMed
    6.Ueno M, Akiguchi I, Hosokawa M, Yagi H, Takemura M, Kimura J, Takeda T (1994) Accumulation of blood-borne horseradish peroxidase in medial portions of the mouse hippocampus. Acta Neurol Scand 90:400–404CrossRef PubMed
    7.Ueno M, Akiguchi I, Hosokawa M, Kotani H, Kanenishi K, Sakamoto H (2000) Blood
    ain barrier permeability in the periventricular areas of the normal mouse brain. Acta Neuropathol 99:385–392CrossRef PubMed
    8.Ueno M, Akiguchi I, Hosokawa M, Kotani H, Kanenishi K, Sakamoto H (1999) The passage of blood-borne horseradish peroxidase into the amygdaloid area of the mouse brain. Histochem Cell Biol 11:265–270CrossRef
    9.Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336PubMed
    10.Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries. Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144CrossRef PubMed
    11.Weller RO, Djuanda E, Yow H-Y, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14CrossRef PubMed
    12.Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO (2013) Cerebral amyloid angiopathy, prion angiopathy, CADASIL and spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 39:593–611CrossRef PubMed
    13.Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. doi:10.​1126/​scitranslmed.​3003748 PubMed PubMedCentral
    14.Louveau A, Smirnov I, Keyes TJ, Eccles JD, Sj Rouhani, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341CrossRef PubMed PubMedCentral
    15.Aspelund A, Antila S, Proulx ST, Karlsen V, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999CrossRef PubMed PubMedCentral
    16.Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Menard J, Zetterberg H, Wisniewski T, de Leon MJ (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470CrossRef PubMed PubMedCentral
    17.Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, Paoletti AC, Kasper TR, DeMattos RB, Zlokovic BV (2012) Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in amouse model of & #x03B2;-amyloidosis. Proc Natl Acad Sci USA 109:15502–15507CrossRef PubMed PubMedCentral
    18.Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL-receptor-related protein-1 at the blood
    ain barrier. J Clin Invest 106:1489–1499CrossRef PubMed PubMedCentral
    19.Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T (2011) Amyloid-β peptide(1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 118:407–415CrossRef PubMed
    20.Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood
    ain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229–4234CrossRef PubMed PubMedCentral
    21.Yazawa H, Yu ZX, Takeda K, Le Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM (2001) Beta Amyloid peptide (Aβ42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillary aggregates in macrophages. FASEB J 15:2454–2462CrossRef PubMed
    22.Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993CrossRef PubMed
    23.Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, Schumacher T, Bruning T, Plath AS, Alfen F, Schmidt A, Winter F, Rateitschak K, Wree A, Gsponer J, Walker LC, Pahnke J (2011) Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest 121:3924–3931CrossRef PubMed PubMedCentral
    24.Do TM, Noel-Hudson MS, Ribes S, Besengez C, Smirnova M, Cisternino S, Buyse M, Calon F, Chimini G, Chacun H, Schermann JM, Farinotti R, Bourasset F (2012) ABCG2- and ABCG4-mediated efflux of amyloid-β peptide 1-40 at the mouse blood
    ain barrier. J Alzheimers Dis 30:155–166PubMed
    25.Daood M, Tsai C, Ahdab-Barmada M, Watchko JF (2008) ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 39:211–218CrossRef PubMed PubMedCentral
    26.Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El-Khoury JB (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160:101–112CrossRef PubMed PubMedCentral
    27.Behl M, Zhang Y, Zheng W (2009) Involvement of insulin-degrading enzyme in the clearance of beta-amyloid at the blood-CSF barrier: consequences of lead exposure. Cerebrospinal Fluid Res 6:11CrossRef PubMed PubMedCentral
    28.Deane R, Du YS, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Liu C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B (2003) RAGE mediates amyloid-beta peptide transport across the blood
    ain barrier and accumulation in brain. Nat Med 9:907–913CrossRef PubMed
    29.Matsumoto K, Chiba Y, Fujihara R, Kubo H, Sakamoto H, Ueno M (2015) Immunohistochemical analysis of transporters related to clearance of amyloid-β peptides through blood-cerebrospinal fluid barrier in human brain. Histochem Cell Biol 144:597–611CrossRef PubMed
    30.Chesser AS, Pritchard SM, Johnson GVW (2013) Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 4:122CrossRef PubMed PubMedCentral
    31.Iliff J, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193CrossRef PubMed PubMedCentral
    32.Zlokovic BV (2008) The blood
    ain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201CrossRef PubMed
    33.Farrall AJ, Wardlaw JM (2009) Blood
    ain barrier: ageing and microvascular disease-systematic review and meta-analysis. Neurobiol Aging 30:337–352CrossRef PubMed
    34.Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV (2015) Blood
    ain barrier breakdown in the aging human hippocampus. Neuron 85:296–302CrossRef PubMed PubMedCentral
    35.Ueno M, Akiguchi I, Yagi H, Naiki H, Fujibayashi Y, Kimura J, Takeda T (1993) Age-related changes in barrier function in mouse brain. I. Accelerated age-related increase of brain transfer of serum albumin in accelerated senescence prone SAM-P/8 mice with deficits in learning and memory. Arch Gerontol Geriatr 16:233–248CrossRef PubMed
    36.Vorbrodt AW, Dobrogowska DH, Ueno M, Tarnawski M (1995) A quantitative immunocytochemical study of blood
    ain barrier to endogenous albumin in cerebral cortex and hippocampus of senescence-accelerated mice (SAM). Folia Histochem Cytobiol 33:229–237PubMed
    37.Ueno M, Dobrogowska DH, Vorbrodt AW (1996) Immunocytochemical evaluation of the blood
    ain barrier to endogenous albumin in the olfactory bulb and pons of senescence-accelerated mice (SAM). Histochem Cell Biol 105:203–212CrossRef PubMed
    38.Ueno M, Akiguchi I, Hosokawa M, Shinnou M, Sakamoto H, Takemura M, Higuchi K (1997) Age-related changes in the brain transfer of blood-borne horseradish peroxidase in the hippocampus of senescence-accelerated mouse. Acta Neuropathol 93:233–240CrossRef PubMed
    39.Abboud H, Labreuche J, Meseguer E, Lavallee PC, Simon O, Olivot JM, Mazighi M, Dehoux M, Benessiano J, Steg PG, Amarenco P (2007) Ischemia-modified albumin in acute stroke. Cerebrovasc Dis 23:216–220CrossRef PubMed
    40.Gunduz A, Turedi S, Mentese A, Altunayoglu V, Turan I, Karahan SC, Topbas M, Aydin M, Eraydin I, Akcan B (2008) Ischemia-modified albumin levels in cerebrovascular accidents. Am J Emerg Med 26:874–878CrossRef PubMed
    41.Shinnou M, Ueno M, Sakamoto H, Ide M (1998) Blood
    ain barrier damage in reperfusion following ischemia in the hippocampus of the Mongolian gerbil brain. Acta Neurol Scand 98:406–411CrossRef PubMed
    42.Tomimoto H, Akiguchi I, Suenaga T, Nishimura M, Wakita H, Nakamura S, Kimura J (1996) Alterations of the blood
    ain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke 27:2069–2074CrossRef PubMed
    43.Hanyu H, Asano T, Tanaka Y, Iwamoto T, Takasaki M, Abe K (2002) Increased blood
    ain barrier permeability in white matter lesions of Binswanger’s disease evaluated by contrast-enhanced MRI. Dement Geriatr Cogn Disord 14:1–6CrossRef PubMed
    44.Ueno M, Tomimoto H, Akiguchi I, Wakita H, Sakamoto H (2002) Blood
    ain barrier disruption in white matter of chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 22:97–104CrossRef PubMed
    45.Verhaaren BFJ, Vernooij MW, de Boer R, Hofman A, Niessen WJ, van der Lugt A, Ikram MA (2013) High blood pressure and cerebral white matter lesion progression in the general population. Hypertension 61:1354–1359CrossRef PubMed
    46.Vaslievko V, Passos G, Quiring D, Head E, Fisher M, Cribbs DH (2010) Aging and cerebrovascular dysfunction: contribution of hypertension, cerebral amyloid angiopathy, and immunotherapy. Ann NY Acad Sci 1207:58–70CrossRef
    47.Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rat. Jpn Circ J 27:282–293CrossRef PubMed
    48.Ueno M, Sakamoto H, Tomimoto H, Akiguchi I, Onodera M, Huang C, Kanenishi K (2004) Blood
    ain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats. Acta Neuropathol 107:532–538CrossRef PubMed
    49.Starr JM, Wardlaw J, Ferguson K, MacLullich A, Deary IJ, Marshall I (2003) Increased blood
    ain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry 74:70–76CrossRef PubMed PubMedCentral
    50.Liao YJ, Ueno M, Nakagawa T, Huang C, Kanenishi K, Onodera M, Sakamoto H (2005) Oxidative damage in cerebral vessels of diabetic db/db mice. Diabetes Metab Res Rev 21:554–559CrossRef PubMed
    51.Hawkins BT, Lundeen TF, Norwood KM, Brooks HL, Egleton RD (2007) Increased blood
    ain barrier permeability and altered tight junctions in experimental diabetes in the rat: condition of hyperglycaemia and matrix metalloproteinases. Diabetologia 50:202–211CrossRef PubMed
    52.Mooradian AD, Haas MJ, Batejko O, Hovsepyan M, Feman SS (2005) Statins ameliorate endothelial barrier permeability changes in the cerebral tissue of streptozotocin-induced diabetic rats. Diabetes 54:2977–2982CrossRef PubMed
    53.Iwanaga Y, Ueno M, Ueki M, Huang CL, Tomita S, Okamoto Y, Ogawa T, Ueda N, Maekawa N, Sakamoto H (2008) The expression of osteopontin is increased in vessels with blood
    ain barrier impairment. Neuropathol Appl Neurobiol 34:145–154CrossRef PubMed
    54.Ueno M, Wu B, Nishiyama A, Huang C, Hosomi N, Kusaka T, Nakagawa T, Onodera M, Kido M, Sakamoto H (2009) The expression of matrix metalloproteinase-13 is increased in vessels with blood
    ain barrier impairment in a stroke-prone hypertensive model. Hypertens Res 32:332–338CrossRef PubMed
    55.Ueno M, Nakagawa T, Nagai Y, Nishi N, Kusaka T, Kanenishi K, Onodera M, Hosomi N, Huang C, Yokomise H, Tomimot H, Sakamoto H (2011) The expression of CD36 in vessels with blood
    ain barrier impairment in a stroke-prone hypertensive model. Neuropathol Appl Neurobiol 37:727–737CrossRef PubMed
    56.Fukami S, Watanabe K, Iwata N, Haraoka J, Lu B, Gerard NP, Gerard C, Fraser P, Westaway D, St. George-Hyslop P, Saido TC (2002) A beta-degrading endopeptidase, neprilysin, in mouse brain: synaptic and axonal localization inversely correlating with Abeta pathology. Neurosci Res 43:39–56CrossRef PubMed
    57.Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093CrossRef PubMed
    58.Miners JS, van Helmond Z, Chalmers K, Wilcock G, Love S, Kehoe PG (2006) Decreased expression and activity of neprilysin in Alzheimer’s disease are associated with cerebral amyloid angiopathy. J Neuropathol Exp Neurol 65:1012–1021CrossRef PubMed
    59.Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR, Paul SM (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nature Med 10:719–726CrossRef PubMed
    60.Lee CY, Landreth GE (2010) The role of microglia in amyloid clearance from the AD brain. J Neural Transm 117:949–960CrossRef PubMed
    61.Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM (2012) Low-density lipoprotein receptor represents and apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 287:13959–13971CrossRef PubMed PubMedCentral
    62.Kenekiyo T, Liu C-C, Shinohara M, Li J, Bu G (2012) LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer’s amyloid-β. J Neurosci 32:16458–16465CrossRef
    63.Kenekiyo T, Crrito JR, Liu C-C, Shinohara M, Li J, Schuler DR, Shinohara M, Holtzman DM, Bu G (2013) Neuronal clearance of amyloid-β by endocytic receptor LRP1. J Neurosci 33:19276–19283CrossRef
    64.Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J (1996) Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood
    ain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93:4229–4234CrossRef PubMed PubMedCentral
    65.Zlokovic BV (2004) Cleaning amyloid through the blood
    ain barrier. J Neurochem 89:807–811CrossRef PubMed
    66.Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM (2005) P-glycoprotein deficiency at the blood
    ain barrier increases amyloid-beta deposition in an Alzheimer’s disease mouse models. J Clin Invest 115:3285–3290CrossRef PubMed PubMedCentral
    67.Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid β; peptide clearance from mouse brain. J Clin Invest 118:4002–4013CrossRef PubMed PubMedCentral
    68.Weller RO, Massery A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733CrossRef PubMed PubMedCentral
    69.Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO (2003) Capillary and arterial amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29:106–117CrossRef PubMed
    70.Crossgrove JS, Li GJ, Zheng W (2005) The choroid plexus removes beta-amyloid from brain cerebrospinal fluid. Exp Biol Med (Maywood) 230:771–776
    71.Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28:202–208CrossRef PubMed
    72.Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood
    ain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113CrossRef PubMed PubMedCentral
    73.Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202:473–477CrossRef PubMed PubMedCentral
  • 作者单位:Masaki Ueno (1)
    Yoichi Chiba (1)
    Ryuta Murakami (1)
    Koichi Matsumoto (1)
    Machi Kawauchi (1)
    Ryuji Fujihara (1)

    1. Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
  • 刊物主题:Neurosurgery; Neurology; Pathology; Oncology; Cancer Research;
  • 出版者:Springer Japan
  • ISSN:1861-387X
文摘
Blood-borne substances can invade into the extracellular spaces of the brain via endothelial cells in sites without the blood–brain barrier (BBB), and can travel through the interstitial fluid (ISF) of the brain parenchyma adjacent to non-BBB sites. It has been shown that cerebrospinal fluid (CSF) drains directly into the blood via the arachnoid villi and also into lymph nodes via the subarachnoid spaces of the brain, while ISF drains into the cervical lymph nodes through perivascular drainage pathways. In addition, the glymphatic pathway of fluids, characterized by para-arterial pathways, aquaporin4-dependent passage through astroglial cytoplasm, interstitial spaces, and paravenous routes, has been established. Meningeal lymphatic vessels along the superior sagittal sinus were very recently discovered. It is known that, in mice, blood-borne substances can be transferred to areas with intact BBB function, such as the medial regions of the hippocampus, presumably through leaky vessels in non-BBB sites. In the present paper, we review the clearance mechanisms of interstitial substances, such as amyloid-β peptides, as well as summarize models of BBB deterioration in response to different types of insults, including acute ischemia followed by reperfusion, hypertension, and chronic hypoperfusion. Lastly, we discuss the relationship between perivascular clearance and brain disorders.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700