Thermal and force modeling of CGI drilling
详细信息    查看全文
  • 作者:A. T. Kuzu ; K. R. Berenji ; M. Bakkal
  • 关键词:Thermal modeling ; Drilling process ; CGI ; FEA ; Numerical optimization
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:82
  • 期:9-12
  • 页码:1649-1662
  • 全文大小:2,838 KB
  • 参考文献:1.Klocke F, Eisenblätter G (1997) Dry cutting. CIRP Annals-Manuf Technol 46(2):519–526. doi:10.​1016/​S0007-8506(07)60877-4 CrossRef
    2.Nachtman E.S., Kalpakjian S. (1985). Lubricants and lubrication in metalworking operations. Marcel Dekker Inc., New York, ISBN-13:978–0824774011
    3.T.A. Bhamra, S. Evans, T.C. McAloone, M. Simon, S. Poole, A. Sweatman. (1999). Integrating environmental decisions into the product development process, part 1. The early stages. Proceedings of the IEEE first international symposium on environmentally conscious design and inverse manufacturing: 329–334: doi:10.​1109/​ECODIM.​1999.​747633
    4.Fratila D (2009) Evaluation of near-dry machining effects on gear milling process efficiency. J Clean Prod 17(9):839–845. doi:10.​1016/​j.​jclepro.​2008.​12.​010 CrossRef
    5.Watanebe K, Yokoyuma K, Ichimaya R (1977) Thermal analyses of the drilling process. Bull Jpn Soc Precis Eng 11(2):71–77. doi:10.​2493/​jjspe1933.​41.​1078
    6.Bono M, Ni J (2001) The effects of thermal distortions on the diameter and cylindricity of dry drilled holes. Int J Mach Tools Manuf 41(15):2261–2270. doi:10.​1016/​S0890-6955(01)00047-5 CrossRef
    7.Kalidas S, Kapoor SG, DeVor RE (2002) Influence of thermal effects on hole quality in dry drilling, part 1: a thermal model of workpiece temperatures. J Manuf Sci Eng 124(2):258–266. doi:10.​1115/​1.​1455645 CrossRef
    8.Tai BL, Stephenson DA, Shih AJ (2012) An inverse heat transfer method for determining workpiece temperature in minimum quantity lubrication deep hole drilling. J Manuf Sci Eng 134(2):021006. doi:10.​1115/​1.​4005794 CrossRef
    9.Pal AK, Bhattacharyya A, Sen GC (1965) Investigation of the torque in drilling ductile materials. Int J Machine Tool Des Res 4(4):205–221. doi:10.​1016/​0020-7357(65)90019-3 CrossRef
    10.Armarego E, Wright J (1984) Predictive models for drilling thrust and torque—a comparison of three flank configurations. CIRP Annals-Manuf Technol 33(1):5–10. doi:10.​1016/​S0007-8506(07)61368-7 CrossRef
    11.Elhachimi M et al (1999) Mechanical modelling of high speed drilling. 1: predicting torque and thrust. Int J Mach Tools Manuf 39(4):553–568. doi:10.​1016/​S0890-6955(98)00050-9 CrossRef
    12.Elhachimi M, Serge T, Pierre J (1999) Mechanical modelling of high speed drilling. 2: predicted and experimental results. Int J Mach Tools Manuf 39(4):569–581. doi:10.​1016/​S0890-6955(98)00051-0 CrossRef
    13.López de Lacalle LN, Rivero A, Lamikiz A (2009) Mechanistic model for drills with double point-angle edges. Int J Adv Manuf Technol 40(5–6):447–457. doi:10.​1007/​s00170-007-1362-8 CrossRef
    14.Sambhav K, Tandon P, Dhande SG (2014) Force modeling for generic profile of drills. ASME J Manuf Sci Eng 136(4):041019–041019-9. doi:10.​1115/​1.​4027595 CrossRef
    15.Altintas, Y. (2012). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press. ISBN: 9780521172479
    16.Gupta K, Ozdoganlar OB, Kapoor SG, DeVor DE (2003) Modeling and prediction of hole profile in drilling, part 1: modeling drill dynamics in the presence of drill alignment errors. J Manuf Sci Eng 125(1):6–13. doi:10.​1115/​1.​1536932 CrossRef
    17.Strenkowski JS, Hsieh CC, Shih AJ (2004) An analytical finite element technique for predicting thrust force and torque in drilling. Int J Mach Tools Manuf 44(12–13):1413–1421. doi:10.​1016/​j.​ijmachtools.​2004.​01.​005 CrossRef
    18.Audy J (2008) A study of computer-assisted analysis of effects of drill geometry and surface coating on forces and power in drilling. J Mater Process Technol 204(1):130–138. doi:10.​1016/​j.​jmatprotec.​2007.​10.​079 CrossRef
    19.Budak EJ, Armarego A, Altintas Y (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118(2):216–224. doi:10.​1115/​1.​2831014 CrossRef
    20.Stabler GV (1951) The foundational geometry of cutting tool. Proc Ins Mec Eng 14–26
    21.Ozcelik B, Bagci E (2006) Experimental and numerical studies on the determination of twist drill temperature in dry drilling: a new approach. Mater Des 27(10):920–927. doi:10.​1016/​j.​matdes.​2005.​03.​008 CrossRef
  • 作者单位:A. T. Kuzu (1)
    K. R. Berenji (1)
    M. Bakkal (1)

    1. Faculty of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
This paper presents a validated temperature distribution model that allows the prediction of temperature increase on a compacted graphite iron (CGI) workpiece during the drilling process. The thermal modeling procedure begins with the geometric modeling of inclination, rake, helix, and effective rake angles. Then, force models are evaluated for the chisel and cutting lip. The force model incorporates mechanistically calculated thrust force and torque values for varying inclination and rake angles on each divided tool segment. Divided segments are obtained by sectioning of the cutting edge, and they are named elemental cutting tools (ECTs). Force results are used to predict heat flux on the chisel, cutting lips, and the margin of the drilling tool. The heat flux values at the margin are optimized through numerical iteration between measured and calculated temperature values. The developed model is also verified experimentally. There is only a negligible difference between the measured and calculated temperature results. Finally, the temperature distribution on the workpiece is successfully obtained using numerical analysis. Keywords Thermal modeling Drilling process CGI FEA Numerical optimization

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700