Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk
详细信息    查看全文
  • 作者:K. Fakhrian MD ; Vice Chair (1) (3)
    M. Oechsner PhD (1)
    S. Kampfer (1)
    T. Schuster PhD (2)
    M. Molls MD (1)
    H. Geinitz MD (1)
  • 关键词:Planning techniques ; Simultaneous integrated boost ; Radiotherapy ; intensity ; modulated ; Volumetric modulated arc therapy ; Helical tomotherapy ; Planungstechniken ; Simultan integrierter Boost ; Intensit?tsmodulierte Strahlentherapie ; Volumetrisch modulierte Bogentherapie ; Helikale Tomotherapie
  • 刊名:Strahlentherapie und Onkologie
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:189
  • 期:4
  • 页码:293-300
  • 全文大小:520 KB
  • 参考文献:1. Lee JL, Park SI, Kim SB et al (2004) A single institutional phase III trial of preoperative chemotherapy with hyperfractionation radiotherapy plus surgery versus surgery alone for resectable esophageal squamous cell carcinoma. Ann Oncol 15:947-54 CrossRef
    2. Gebski V, Burmeister B, Smithers BM et al (2007) Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol 8:226-34 CrossRef
    3. Walsh TN, Noonan N, Hollywood D et al (1996) A comparison of multimodal therapy and surgery for esophageal acenocarcinoma. N Engl J Med 335:462-67 CrossRef
    4. Kranzfelder M, Schuster T, Geinitz H et al (2011) Meta-analysis of neoadjuvant treatment modalities and definitive non-surgical therapy for oesophageal squamous cell cancer. Br J Surg 98:768-83 CrossRef
    5. P?ttgen C, Stuschke M (2012) Radiotherapy versus surgery within multimodality protocols for esophageal cancer—A meta-analysis of the randomized trials. Cancer Treat Rev 38:599-04 CrossRef
    6. Koki Y, Ishikawa O, Takashi K et al (2005) Association of the primary tumor location with the site of tumor recurrence after curative resection of thoracic esophageal carcinoma. World J Surg 29:700-05 CrossRef
    7. Welsh J, Palmer MB, Ajani JA et al (2012) Esophageal cancer dose escalation using a imultaneous integrated boost technique. Int J Radiat Oncol Biol Phys 82:468-74 CrossRef
    8. Settle SH, Bucci MK, Palmer MB et al (2008) PET/CT fusion with treatment planning CT (TP CT) shows predominant pattern of locoregional failure in esophageal patients treated with chemoradiation (CRT) is in GTV. Int J Radiat Oncol Biol Phys 72:S72–S73 CrossRef
    9. Minsky B, Pajak T, Ginsberg R et al (2002) INT0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer high-dose versus standard dose radiation therapy. J Clin Oncol 20:1167-174 CrossRef
    10. D’Journo XB, Michelet P, Dahan L et al (2008) Indications and outcome of salvage surgery for oesophageal cancer. Eur J Cardiothorac Surg 33:1117-123 CrossRef
    11. Cooper JS, Guo MD, Herskovic A et al (1999) Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA 281(17):1623-627 CrossRef
    12. Nutting CM, Bedford JL, Cosgrove VP, Tait DM et al (2005) A comparison of conformal and intensity-modulated techniques for oesophageal radiotherapy. Radiother Oncol 61:157-63 CrossRef
    13. Fakhrian K, Heilmann J, Schuster T et al (2012) Primary radiotherapy with or without chemotherapy in non-metastatic esophageal squamous cell carcinoma: a retrospective study. Dis Esophagus 25:256-62 CrossRef
    14. Sun SP, Liu YZ, Ye T, Zhang W et al (2006) Randomized clinical trial on seven-day-per-week continuous accelerated irradiation for patients with esophageal carcinoma: preliminary report on tumor response and acute toxicity. World J Gastroenterol 12:7047-050
    15. Nishimura Y, Ono K, Tsutsui K (1994) Esophageal cancer treated with radiotherapy: impact of total treatment time and fractionation. Int J Radiat Oncol Biol Phys 30:1099-105 CrossRef
    16. Shirai K, Tamaki Y, Kitamoto Y et al (2011) Dose-volume histogram parameters and clinical factors associated with pleural effusion after chemoradiotherapy in esophageal cancer patients. Int J Radiat Oncol Biol Phys 80:1002-007 CrossRef
    17. Miyata H, Yamasaki M, Takiguchi S et al (2009) Salvage esophagectomy after definitive chemoradiotherapy for thoracic esophageal cancer. J Surg Oncol 100:442-46 CrossRef
    18. Gardner-Thorpe J, Hardwick RH, Dwerryhouse SJ (2007) Salvage oesophagectomy after local failure of definitive chemoradiotherapy. Br J Surg 94:1059-066 CrossRef
    19. Ariga H, Nemoto K, Miyazaki S et al (2009) Prospective comparison of surgery alone and chemoradiotherapy with selective surgery in resectable squamous cell carcinoma of esophagus Int J Radiat Oncol Biol Phys 75:348-56
    20. Wilson KS, Lim JT (2000) Primary chemo-radiotherapy and selective oesophagectomy for oesophageal cancer: goal of cure with organ preservation. Radiother Oncol 54:129-34 CrossRef
    21. Bosset JF, Gignoux M, Triboulet JP et al (1997) Chemoradiotherapy followed by surgery compared with surgery alone in squamous cell cancer of the esophagus. N Engl J Med 337:161-67 CrossRef
    22. Samel S, Hofheinz R, Hundt A et al (2001) Neoadjuvant radiochemotherapy of adenocarcinoma of the oesophagogastric junction. Onkologie 24:278-82 CrossRef
    23. Lee HK, Vaporciyan AA, Cox JD et al (2003) Postoperative pulmonary complications after preoperative chemoradiation for esophageal carcinoma: correlation with pulmonary dose-volume histogram parameters. Int J Radiat Oncol Biol Phys 57:1317-322 CrossRef
    24. Wang SL, Liao Z, Vaporciyan AA et al (2006) Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys 64:692-99 CrossRef
    25. Tucker SL, Liu HH, Wang S et al (2006) Dose-volume modeling of the risk of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys 66:754-61 CrossRef
    26. Adelstein DJ, Rice TW, Becker M et al (1997) Use of concurrent chemotherapy, accelerated fractionation radiation, and surgery for patients with esophageal carcinoma. Cancer 80:1011-020 CrossRef
    27. Valentí V, Hernández-Lizoain JL, Marínez-Regueira F (2011) Transthoracic oesophagectomy with lymphadenectomy in 100 oesophageal cancer patients: multidisciplinary approach. Clin Transl Oncol 13:899-03 CrossRef
    28. Schieman C, Wigle DA, Deschamps C (2012) Patterns of operative mortality following esophagectomy. Dis Esophagus 25:645-51 CrossRef
    29. Whooley BP, Law S, Murthy SC (2001) Analysis of reduced death and complication rates after esophageal resection. Ann Surg 233:338-44 CrossRef
    30. D?hn D, Martell J, Vorwerk H et al (2010) Influence of irradiated lung volumes on perioperative morbidity and mortality in patients after neoadjuvant radiochemotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys 77:44-2 CrossRef
    31. Boshier PR, Anderson O, Hanna GB (2011) Transthoracic versus transhiatal esophagectomy for the treatment of esophagogastric cancer: a meta-analysis. Ann Surg 254:894-06 CrossRef
    32. Hulscher JB, Sandick JW van, Boer AG de (2002) Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med 347:1662-669 CrossRef
    33. Marks LB, Bentzen SM, Deasy JO (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76(3 Suppl):70-6 CrossRef
    34. Subramaniam S, Thirumalaiswamy S, Srinivas C et al (2012) Chest wall radiotherapy with volumetric modulated arcs and the potential role of flattening filter free photon beams. Strahlenther Onkol 188:484-91 CrossRef
    35. Wiehle R, Knippen St, Grosu AL et al (2011) VMAT and step-and-shoot IMRT in head and neck cancer: a comparative plan analysis. Strahlenther Onkol 187:820-25 CrossRef
    36. Mayo CS, Urie MM, Fitzgerald TJ, Ding L et al (2008) Hybrid IMRT for treatment of cancers of the lung and esophagus. Int J Radiat Oncol Biol Phys 71:1408-418 CrossRef
    37. Chen YJ, Liu A, Han C et al (2007) Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution. Med Dosim 32:166-71 CrossRef
    38. Uhl M, Sterzing F, Habl G et al (2012) Breast cancer and funnel chest comparing helical tomotherapy and three-dimensional conformal radiotherapy with regard to the shape of pectus excavatum. Strahlenther Onkol 188:127-35 CrossRef
    39. Fakhrian K, Gamisch N,·Schuster T et al (2012) Salvage radiotherapy in patients with recurrent esophageal carcinoma. Strahlenther Onkol 188:136-42 CrossRef
    40. Semrau R, Herzog SL, Vallb?hmer D et al (2012) Radiotherapy in elderly patients with inoperable esophageal cancer Is there a benefit? Strahlenther Onkol 188:226-34 CrossRef
  • 作者单位:K. Fakhrian MD, Vice Chair (1) (3)
    M. Oechsner PhD (1)
    S. Kampfer (1)
    T. Schuster PhD (2)
    M. Molls MD (1)
    H. Geinitz MD (1)

    1. Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universit?t München, Ismaninger St. 22, 81675, Munich, Germany
    3. Department of Radiation Oncology, Marienhospital Herne, Universit?tsklinkum der Ruhr-Universit?t Bochum, H?lkeskampring 40, 44625, Herne, Germany
    2. Institute of Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technische Universit?t München, Munich, Germany
  • ISSN:1439-099X
文摘
Purpose The goal of this work was to investigate the potential of advanced radiation techniques in dose escalation in the radiotherapy (RT) for the treatment of esophageal carcinoma. Methods A total of 15 locally advanced esophageal cancer (LAEC) patients were selected for the present study. For all 15?patients, we created a 3D conformal RT plan (3D-45) with 45?Gy in fractions of 1.8?Gy to the planning target volume (PTV1), which we usually use to employ in the neoadjuvant treatment of LAEC. Additionally, a 3D boost (as in the primary RT of LAEC) was calculated with 9?Gy in fractions of 1.8?Gy to the boost volume (PTV2) (Dmean) to a total dose of 54?Gy (3D-54?Gy), which we routinely use for the definitive treatment of LAEC. Three plans with a simultaneous integrated boost (SIB) were then calculated for each patient: sliding window intensity-modulated radiotherapy (IMRT-SIB), volumetric modulated arc therapy (VMAT-SIB), and helical tomotherapy (HT-SIB). For the SIB plans, the requirement was that 95- of the PTV1 receive ≥-00- of the prescription dose (45?Gy in fractions of 1.8?Gy, D95) and the PTV2 was dose escalated to 52.5?Gy in fractions of 2.1?Gy (D95). Results The median PTV2 dose for 3D-45, 3D-54, HT-SIB, VMAT-SIB, and IMRT-SIB was 45, 55, 54, 56, and 55?Gy, respectively. Therefore, the dose to PTV2 in the SIB plans was comparable to the 3D-54 plan. The lung dose in the SIB plans was in the range of the standard 3D-45, which is applied for neoadjuvant radiotherapy. The mean lung dose for the same plans was 13, 15, 12, 12, and 13?Gy, respectively. The V5 lung volumes were 71, 74, 79, 75, and 73-, respectively. The V20 lung volumes were 20, 25, 16, 18, and 19-, respectively. Conclusion New treatment planning techniques enable higher doses to be delivered for neoadjuvant radiotherapy of LAEC without a significant increase in the delivered dose to the organs at risk. Clinical investigations are warranted to study the clinical safety and feasibility of applying higher doses through advanced techniques in the neoadjuvant treatment of LAEC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700