Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique
详细信息    查看全文
  • 作者:Soumita Das (1)
    Monali Sen (2)
    Chinmay Saha (1)
    Debjani Chakraborty (1)
    Antara Das (3)
    Manidipa Banerjee (4)
    Anindita Seal (1)
  • 关键词:Amplified rDNA restriction analysis ; Brassica juncea ; Natural resistance ; associated macrophage protein ; Yellow stripe like ; Heavy metal ; Allele ; specific semi ; quantitative RT ; PCR
  • 刊名:Planta
  • 出版年:2011
  • 出版时间:July 2011
  • 年:2011
  • 卷:234
  • 期:1
  • 页码:139-156
  • 全文大小:1217KB
  • 参考文献:1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389鈥?402 CrossRef
    2. Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2009) OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681鈥?92 CrossRef
    3. Barnes WM (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci USA 91:2216鈥?220
    4. Begonia GB, Davis CD, Begonia MF, Gray CN (1998) Growth responses of Indian mustard [ / Brassica juncea (L.) Czern.] and its phytoextraction of lead from a contaminated soil. Bull Environ Contam Toxicol 61:38鈥?3 CrossRef
    5. Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217鈥?28 CrossRef
    6. Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904鈥?17 CrossRef
    7. Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA 92:10089鈥?0093
    8. Chang P, Kim KW, Yoshida S, Kim SY (2005) Uranium accumulation of crop plants enhanced by citric acid. Environ Geochem Health 27:529鈥?38 CrossRef
    9. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from / Arabidopsis thaliana in iron transport. Biochem J 347(Pt 3):749鈥?55
    10. Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346鈥?49 CrossRef
    11. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1鈥?1 CrossRef
    12. DiDonato R J Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403鈥?14 CrossRef
    13. Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862鈥?866 CrossRef
    14. Duquene L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496鈥?505 CrossRef
    15. Gendre D, Czernic P, Conejero G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator / Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1鈥?5 CrossRef
    16. Gilmartin PM, Bowler C (eds) (2002) Molecular plant biology: a practical approach, vol 2. Oxford University Press, USA, pp 184鈥?02
    17. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391鈥?95 CrossRef
    18. Harada E, Sugase K, Namba K, Iwashita T, Murata Y (2007) Structural element responsible for the Fe(III)-phytosiderophore specific transport by HvYS1 transporter in barley. FEBS Lett 581:4298鈥?302 CrossRef
    19. Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in / Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833鈥?839 CrossRef
    20. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470鈥?479 CrossRef
    21. Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S, Puppo A, Day DA (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295鈥?04 CrossRef
    22. Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator / Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in / Saccharomyces cerevisiae. Plant J 39:237鈥?51 CrossRef
    23. Kivioja T, Arvas M, Saloheimo M, Penttila M, Ukkonen E (2005) Optimization of cDNA-AFLP experiments using genomic sequence data. Bioinformatics 21:2573鈥?579 CrossRef
    24. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415鈥?24 CrossRef
    25. Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263鈥?272 CrossRef
    26. Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U, Barbier-Brygoo H, Thomine S (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041鈥?051 CrossRef
    27. Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986鈥?999 CrossRef
    28. Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44:769鈥?82 CrossRef
    29. Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827鈥?36 CrossRef
    30. Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481鈥?83 CrossRef
    31. Lubkowitz M (2006) The OPT family functions in long-distance peptide and metal transport in plants. Genet Eng 27:35鈥?5 CrossRef
    32. MacDiarmid CW, Milanick MA, Eide DJ (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J Biol Chem 278:15065鈥?5072 CrossRef
    33. Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:13 CrossRef
    34. Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wiren N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761鈥?773 CrossRef
    35. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using / Thlaspi caerulescens as a model system. Ann Bot 102:3鈥?3 CrossRef
    36. Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant / Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793鈥?01 CrossRef
    37. Oomen RJ, Wu J, Lelievre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MG, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator / Thlaspi caerulescens. New Phytol 181:637鈥?50 CrossRef
    38. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of / Brassica juncea and / Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113 CrossRef
    39. Papoyan A, Kochian LV (2004) Identification of / Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814鈥?823
    40. Pittman PM, Arnold SB, Schlette S (2005) Care management in Germany and the U.S.: an expanded laboratory. Health Care Financ Rev 27:9鈥?8
    41. Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe1 Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112鈥?20 CrossRef
    42. Rombauts S, Van De Peer Y, Rouze P (2003) AFLPinSilico, simulating AFLP fingerprints. Bioinformatics 19:776鈥?77 CrossRef
    43. Sambrook J, Russell DW (2001) Rapid amplification of 5鈥?cDNA ends. Molecular cloning: a laboratory manual, chap 8, protocol 9, 8.54鈥?8.60. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
    44. Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091鈥?096 CrossRef
    45. Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Somerville SC, Maclean DJ (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with / Alternaria brassicicola. Plant Physiol 132:999鈥?010 CrossRef
    46. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC鈥檚 of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535鈥?42 CrossRef
    47. Schranz ME, Song BH, Windsor AJ, Mitchell-Olds T (2007) Comparative genomics in the Brassicaceae: a family-wide perspective. Curr Opin Plant Biol 10:168鈥?75 CrossRef
    48. Stakenborg T, Vicca J, Butaye P, Maes D, De Baere T, Verhelst R, Peeters J, de Kruif A, Haesebrouck F, Vaneechoutte M (2005) Evaluation of amplified rDNA restriction analysis (ARDRA) for the identification of Mycoplasma species. BMC Infect Dis 5:46 CrossRef
    49. Talke IN, Hanikenne M, Kramer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator / Arabidopsis halleri. Plant Physiol 142:148鈥?67 CrossRef
    50. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991鈥?996
    51. Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685鈥?95 CrossRef
    52. van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren Ver, van Themaat E, Koornneef M, Aarts MG (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of / Arabidopsis thaliana and the related metal hyperaccumulator / Thlaspi caerulescens. Plant Physiol 142:1127鈥?147 CrossRef
    53. Vassil AD, Kapulnik Y, Raskin II, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447鈥?53 CrossRef
    54. Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte / Arabidopsis halleri ssp. / halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659鈥?74 CrossRef
    55. Zhao H, Butler E, Rodgers J, Spizzo T, Duesterhoeft S, Eide D (1998) Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J Biol Chem 273:28713鈥?8720 CrossRef
    56. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169鈥?178 CrossRef
  • 作者单位:Soumita Das (1)
    Monali Sen (2)
    Chinmay Saha (1)
    Debjani Chakraborty (1)
    Antara Das (3)
    Manidipa Banerjee (4)
    Anindita Seal (1)

    1. Department of Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
    2. Department of Biotechnology, West Bengal University of Technology, BF-142, Sector I, Salt Lake, Kolkata, 700064, India
    3. Behavioural Neurogenetics Lab, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
    4. School of Biological Sciences, Indian Institute of Technology (IIT), Delhi Hauz Khas, New Delhi, 110016, India
文摘
Heavy metal transporters play a key role in regulating metal accumulation and transport in plants. These are important candidate genes to study in metal tolerant and accumulator plants for their potential use in environmental clean up. We coupled a degenerate primer-based RT-PCR approach with a molecular fingerprinting technique based on amplified rDNA restriction analysis (ARDRA) to identify novel ESTs corresponding to heavy metal transporters from metal accumulator Brassica juncea. We utilized this technique to clone several family members of natural resistance-associated macrophage proteins (NRAMP) and yellow stripe-like proteins (YSL) in a high throughput manner to distinguish between closely related isoforms and/or allelic variants from the allopolyploid B. juncea. Partial clones of 23 Brassica juncea NRAMPs and 27 YSLs were obtained with similarity to known Arabidopsis thaliana and Noccaea (Thlaspi) caerulescens NRAMP and YSL genes. The cloned transporters showed Brassica-specific changes in domains, which can have important functional consequences. Semi-quantitative RT-PCR-based expression analysis of chosen members indicated that even closely related isoforms/allelic variants of BjNRAMP and BjYSL have distinct tissue-specific and metal-dependent expressions which might be essential for adaptive fitness and heavy metal tolerance. Consistent to this, BjYSL6.1 and BjYSL5.8 were found to show elevated expressions specifically in cadmium-treated shoots and lead-treated roots of B. juncea, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700