Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst
详细信息    查看全文
  • 作者:Subash Chandra Sahu (1)
    Aneeya K. Samantara (1)
    Ajit Dash (1)
    R. R. Juluri (2)
    Ranjan K. Sahu (3)
    B. K. Mishra (1)
    Bikash Kumar Jena (1)
  • 关键词:nanodendrites ; reduced graphene ; methanol oxidation ; surface poisoning
  • 刊名:Nano Research
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:6
  • 期:9
  • 页码:635-643
  • 全文大小:898KB
  • 参考文献:1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. / Nature 2012, / 486, 43鈥?1. CrossRef
    2. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. / Science 2009, / 324, 1302鈥?305. CrossRef
    3. Jena, B. K.; Sahu, S. C.; Satpati, S.; Sahu, R. K.; Behera, D.; Mohanty, S. A facile approach for morphosynthesis of Pd nanoelectrocatalysts. / Chem. Commun. 2011, / 47, 3796鈥?798. CrossRef
    4. Sahu, S. C.; Samantara, A. K.; Ghosh, A.; Jena, B. K. A bio-inspired approach for shaping Au nanostructures: The role of biomolecule structures in shape evolution. / Chem.鈥擡ur. J., in press, 10.1002/chem.201300268.
    5. Wang, L.; Yamauchi, Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. / J. Am. Chem. Soc. 2009, / 131, 9152鈥?153. CrossRef
    6. Guo, S.; Dong, S.; Wang, E. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. / Energy Environ. Sci. 2010, / 3, 1307鈥?310. CrossRef
    7. Mohanty, A.; Garg, N.; Jin, R. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. / Angew. Chem. Int. Ed. 2010, / 49, 4962鈥?966. CrossRef
    8. Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. / J. Am. Chem. Soc. 2010, / 132, 7580鈥?581. CrossRef
    9. Mazumder, V.; Sun, S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. / J. Am. Chem. Soc. 2009, / 131, 4588鈥?589. CrossRef
    10. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. / Chem. Rev. 2009, / 109, 4183鈥?206. CrossRef
    11. Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. / Energy Environ. Sci. 2012, / 5, 6352鈥?357. CrossRef
    12. Antolini, E. Carbon supports for low-temperature fuel cell catalysts. / Appl. Catal. B-Environ. 2009, / 88, 1鈥?4. CrossRef
    13. Kauffman, D. R.; Star, A. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. / Analyst 2010, / 135, 2790鈥?797. CrossRef
    14. Geim, A. K.; Novoselov, K. S. The rise of graphene. / Nat. Mater. 2007, / 6, 183鈥?91. CrossRef
    15. Guo, S.; Dong, S. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. / Chem. Soc. Rev. 2011, / 40, 2644鈥?672. CrossRef
    16. Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. / Nature 2012, / 490, 192鈥?00. CrossRef
    17. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. / Chem. Rev. 2010, / 110, 132鈥?45. CrossRef
    18. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. / Adv. Mater. 2010, 22, 3906鈥?924. CrossRef
    19. Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. / Energy Environ. Sci. 2012, / 5, 7936鈥?942. CrossRef
    20. Liang, Y.; Li, Y.; Wang, H.; Dai, H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. / J. Am. Chem. Soc. 2013, / 135, 2013鈥?036. CrossRef
    21. Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. / Nano Res. 2010, / 3, 429鈥?37. CrossRef
    22. Jin, Z.; Nackashi, D.; Lu, W.; Kittrell, C.; Tour, J. M. Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. / Chem. Mater. 2010, / 22, 5695鈥?699. CrossRef
    23. Lee, J. W.; Hall, A. S.; Kim, J.-D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. / Chem. Mater. 2012, / 24, 1158鈥?164. CrossRef
    24. Guo, S.; Dong, S.; Wang, E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. / ACS Nano 2010, / 4, 547鈥?55. CrossRef
    25. Jasuja, K.; Berry, V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: Electrical property tailoring and Raman enhancement. / ACS Nano 2009, / 3, 2358鈥?366. CrossRef
    26. Huang, X.; Li, S.; Wu, S.; Huang, Y.; Boey, F.; Gan, C. L.; Zhang, H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. / J. Mater. Chem. 2012, / 22, 7791鈥?796. CrossRef
    27. Luo, Z.; Yuwen, L.; Bao, B.; Tian, J.; Zhu, X.; Weng, L.; Wang, L. One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells. / J. Mater. Chem. 2012, / 22, 7791鈥?796. CrossRef
    28. Yao, Z.; Zhu, M.; Jiang, F.; Du, Y.; Wang, C.; Yang P. Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. / J. Mater. Chem. 2012, / 22, 13707鈥?3713. CrossRef
    29. Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Gr谩cio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. / Chem. Mater. 2009, / 21, 4796鈥?802. CrossRef
    30. Shukla, R.; Nune, S. K.; Chanda, N.; Katti, K.; Mekapothula, S.; Kulkarni, R. R.; Welshons, W. V.; Kannan, R.; Katti, K. V. Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. / Small 2008, / 4, 1425鈥?436. CrossRef
    31. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Brink, V. J.; Kelly, P. J. Doping graphene with metal contacts. / Phys. Rev. Lett. 2008, / 101, 026803. CrossRef
    32. Ramirez, E.; Jansat, S.; Philippot, K.; Lecante, P.; Gomez, M.; Masdeu-Bulto, A. M.; Chaudret, B. Influence of organic ligands on the stabilization of palladium nanoparticles. / J. Organomet. Chem. 2004, / 689, 4601鈥?610. CrossRef
    33. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. / J. Phys. Chem. B 2005, / 109, 13857鈥?3870. CrossRef
    34. Watt, J.; Young, N.; Haigh, S.; Kirkland, A.; Tilley, R. D. Synthesis and structural characterization of branched palladium nanostructures. / Adv. Mater. 2009, / 21, 2288鈥?293. CrossRef
    35. Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. / Adv. Mater. 2007, / 19, 3385鈥?391. CrossRef
    36. Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. / Energy Environ. Sci. 2011, / 4, 1161鈥?176. CrossRef
    37. Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. / Angew. Chem. Int. Ed. 2010, / 49, 2211鈥?214. CrossRef
    38. Lee, Y. W.; Kim, N. H.; Lee, K. Y.; Kwon, K.; Kim, M.; Han, S. W. Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles. / J. Phys. Chem. C 2008, / 112, 6717鈥?722. CrossRef
    39. Lin, Y.; Cui, X.; Yen, C.; Wai, C. M. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. / J. Phys. Chem. B 2005, / 109, 14410鈥?4415. CrossRef
    40. Wang, L.; Wang, H.; Nemoto, Y.; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. / Chem. Mater. 2010, / 22, 2835鈥?841. CrossRef
    41. Zhou, Y.-G.; Chen, J.-J.; Wang, F.-B.; Sheng, Z.-H.; Xia, X.-H. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. / Chem. Commun. 2010, / 46, 5951鈥?953. CrossRef
    42. Qian, W.; Hao, R.; Zhou, J.; Eastman, M.; Manhat, B. A.; Sun, Q.; Goforth, A. M.; Jiao, J. Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. / Carbon 2013, / 52, 595鈥?04. CrossRef
    43. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. / Carbon 2007, / 45, 1558鈥?565. CrossRef
    44. Qiu, J.-D.; Wang, G.-C.; Liang, R.-P.; Xia, X.-H.; Yu, H.-W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. / J. Phys. Chem. C 2011, / 115, 15639鈥?5645. CrossRef
    45. Awasthi, R.; Singh, R. N. Optimization of the Pd-Sn-GNS nanocomposite for enhanced electrooxidation of methanol. / Int. J. Hydrogen Energ. 2012, / 37, 2103鈥?110. CrossRef
  • 作者单位:Subash Chandra Sahu (1)
    Aneeya K. Samantara (1)
    Ajit Dash (1)
    R. R. Juluri (2)
    Ranjan K. Sahu (3)
    B. K. Mishra (1)
    Bikash Kumar Jena (1)

    1. Colloids & Materials Chemistry, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
    2. Institute of Physics, Bhubaneswar, 751005, India
    3. Materials Science and Technology Division, National Metallurgical Laboratory, Jamshedpur, 831007, India
  • ISSN:1998-0000
文摘
A facile and green approach has been developed for the in situ synthesis of hybrid nanomaterials based on dendrite-shaped Pd nanostructures supported on graphene (RG). The as-synthesized hybrid nanomaterials (RG-PdnDs) have been thoroughly characterized by high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy and electrochemical techniques. The mechanism of formation of such dendrite-shaped Pd nanostructures on the graphene support has been elucidated using TEM measurements. The RG induces the formation of, and plays a decisive role in shaping, the dendrite morphology of Pd nanostructures on its surface. Cyclic voltammetry and chronoamperometry techniques have been employed to evaluate the electrochemical performance of RG-PdnDs towards oxidation of methanol. The electrochemical (EC) activities of RG-PdnDs are compared with graphene-supported spherical-shaped Pd nanostructures, Pd nanodendrites alone and a commercial available Pd/C counterpart. The combined effect of the graphene support and the dendrite morphology of RG-PdnDs triggers the high electrocatalytic activity and results in robust tolerance to CO poisoning.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700