Activity coefficients of NiO and CoO in CaO–Al2O3–SiO2 slag and their application to the recycling of Ni–Co–Fe-based end-of-life superalloys via remelting
详细信息    查看全文
  • 作者:Xin Lu ; Takahiro Miki ; Tetsuya Nagasaka
  • 关键词:recycling ; nickel ; cobalt ; end ; of ; life ; superalloys ; activity coefficients ; remelting ; slag
  • 刊名:International Journal of Minerals, Metallurgy, and Materials
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:24
  • 期:1
  • 页码:25-36
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Materials Science, general; Metallic Materials; Characterization and Evaluation of Materials; Ceramics, Glass, Composites, Natural Materials; Surfaces and Interfaces, Thin Films; Tribology, Corrosion
  • 出版者:University of Science and Technology Beijing
  • ISSN:1869-103X
  • 卷排序:24
文摘
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni–Co–Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO–Al2O3–SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO–Al2O3–SiO2 slag. The activity coefficients of NiO and CoO in CaO–Al2O3–SiO2 slag both show a positive deviation from Raoult’s law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700