Olfactory Deprivation Hastens Alzheimer-Like Pathologies in a Human Tau-Overexpressed Mouse Model via Activation of cdk5
详细信息    查看全文
  • 作者:Ke Li ; Fang-Fang Liu ; Chun-Xue He ; He-Zhou Huang ; Ao-Ji Xie…
  • 关键词:Alzheimer’s disease ; Olfactory deprivation ; cdk5 ; Cholinergic neurons
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:391-401
  • 全文大小:5,434 KB
  • 参考文献:1.Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA (2009) Olfactory impairment in presymptomatic Alzheimer’s disease. Ann N Y Acad Sci 1170:730–735. doi:10.​1111/​j.​1749-6632.​2009.​04013.​x CrossRef PubMed PubMedCentral
    2.Mesholam RI, Moberg PJ, Mahr RN, Doty RL (1998) Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Arch Neurol 55(1):84–90CrossRef PubMed
    3.Murphy C (1999) Loss of olfactory function in dementing disease. Physiol Behav 66(2):177–182CrossRef PubMed
    4.Berg D (2008) Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegener Dis 5(3–4):133–136. doi:10.​1159/​000113682 , %/ 2008 S. Karger AG, BaselCrossRef PubMed
    5.Wesson DW, Wilson DA, Nixon RA (2010) Should olfactory dysfunction be used as a biomarker of Alzheimer’s disease? Expert Rev Neurother 10(5):633–635. doi:10.​1586/​ern.​10.​33 CrossRef PubMed PubMedCentral
    6.Kelly JP, Wrynn AS, Leonard BE (1997) The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Ther 74(3):299–316CrossRef PubMed
    7.Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29(4–5):627–647. doi:10.​1016/​j.​neubiorev.​2005.​03.​010 CrossRef PubMed
    8.Aleksandrova IY, Kuvichkin VV, Kashparov IA, Medvinskaya NI, Nesterova IV, Lunin SM, Samokhin AN, Bobkova NV (2004) Increased level of beta-amyloid in the brain of bulbectomized mice. Biochemistry (Mosc) 69(2):176–180CrossRef
    9.Bobkova N, Guzhova I, Margulis B, Nesterova I, Medvinskaya N, Samokhin A, Alexandrova I, Garbuz D, Nudler E, Evgen’Ev M (2013) Dynamics of endogenous Hsp70 synthesis in the brain of olfactory bulbectomized mice. Cell Stress Chaperones 18(1):109–118. doi:10.​1007/​s12192-012-0359-x CrossRef PubMed PubMedCentral
    10.Bobkova NV, Garbuz DG, Nesterova I, Medvinskaya N, Samokhin A, Alexandrova I, Yashin V, Karpov V, Kukharsky MS, Ninkina NN, Smirnov AA, Nudler E, Evgen’Ev M (2014) Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer’s disease. J Alzheimers Dis 38(2):425–435. doi:10.​3233/​jad-130779 PubMed
    11.Han F, Shioda N, Moriguchi S, Qin ZH, Fukunaga K (2008) The vanadium (IV) compound rescues septo-hippocampal cholinergic neurons from neurodegeneration in olfactory bulbectomized mice. Neuroscience 151(3):671–679. doi:10.​1016/​j.​neuroscience.​2007.​11.​011 CrossRef PubMed
    12.Capurso SA, Calhoun ME, Sukhov RR, Mouton PR, Price DL, Koliatsos VE (1997) Deafferentation causes apoptosis in cortical sensory neurons in the adult rat. J Neurosci 17(19):7372–7384PubMed
    13.Koliatsos VE, Dawson TM, Kecojevic A, Zhou Y, Wang YF, Huang KX (2004) Cortical interneurons become activated by deafferentation and instruct the apoptosis of pyramidal neurons. Proc Natl Acad Sci U S A 101(39):14264–14269. doi:10.​1073/​pnas.​0404364101 CrossRef PubMed PubMedCentral
    14.Jaako-Movits K, Zharkovsky T, Pedersen M, Zharkovsky A (2006) Decreased hippocampal neurogenesis following olfactory bulbectomy is reversed by repeated citalopram administration. Cell Mol Neurobiol 26(7–8):1559–1570. doi:10.​1007/​s10571-006-9090-4 PubMed
    15.Racekova E, Orendacova J (2007) An olfactory bulbectomy model to study plasticity of the nervous system in rat: a review focused on published data from the Slovak Republic. Int J Neurosci 117(8):1067–1090. doi:10.​1080/​0020745060091227​1 CrossRef PubMed
    16.Norrholm SD, Ouimet CC (2001) Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse 42 (3):151–163. doi:10.​1002/​syn.​10006 %/ Copyright 2001 Wiley-Liss, Inc.
    17.Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T (2003) Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 138(1):9–15CrossRef PubMed
    18.Blard O, Frebourg T, Campion D, Lecourtois M (2006) Inhibition of proteasome and Shaggy/glycogen synthase kinase-3beta kinase prevents clearance of phosphorylated tau in Drosophila. J Neurosci Res 84(5):1107–1115. doi:10.​1002/​jnr.​21006 , %/ Copyright 2006 Wiley-Liss, IncCrossRef PubMed
    19.Liu YH, Wei W, Yin J, Liu GP, Wang Q, Cao FY, Wang JZ (2009) Proteasome inhibition increases tau accumulation independent of phosphorylation. Neurobiol Aging 30(12):1949–1961. doi:10.​1016/​j.​neurobiolaging.​2008.​02.​012 CrossRef PubMed
    20.Yamamoto T, Hirano A (1986) A comparative study of modified Bielschowsky, Bodian and thioflavin S stains on Alzheimer’s neurofibrillary tangles. Neuropathol Appl Neurobiol 12(1):3–9CrossRef PubMed
    21.Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci. doi:10.​1016/​j.​tins.​2014.​08.​004 , %/ Copyright (c) 2014 Elsevier Ltd. All rights reservedPubMed
    22.Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 87(15):5827–5831CrossRef PubMed PubMedCentral
    23.Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86(3):582–590CrossRef PubMed
    24.Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142(3):387–397. doi:10.​1016/​j.​cell.​2010.​06.​036 , %/ Copyright 2010 Elsevier Inc. All rightsCrossRef PubMed
    25.Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10(2):122–126. doi:10.​1002/​ana.​410100203 CrossRef PubMed
    26.Babic T (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 67(4):558CrossRef PubMed PubMedCentral
    27.Marcilhac A, Maurel D, Anglade G, Ixart G, Mekaouche M, Hery F, Siaud P (1997) Effects of bilateral olfactory bulbectomy on circadian rhythms of ACTH, corticosterone, motor activity and body temperature in male rats. Arch Physiol Biochem 105(6):552–559. doi:10.​1076/​apab.​105.​6.​552.​3273 CrossRef PubMed
    28.Marcilhac A, Faudon M, Anglade G, Hery F, Siaud P (1999) An investigation of serotonergic involvement in the regulation of ACTH and corticosterone in the olfactory bulbectomized rat. Pharmacol Biochem Behav 63(4):599–605CrossRef PubMed
    29.Harkin A, Kelly JP, Leonard BE (2003) A review of the relevance and validity of olfactory bulbectomy as a model of depression. Clin Neurosci Res 3(4):253–262. doi:10.​1016/​s1566-2772(03)00087-2 CrossRef
    30.Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405(6784):360–364. doi:10.​1038/​35012636 CrossRef PubMed
    31.Smith PD, Mount MP, Shree R, Callaghan S, Slack RS, Anisman H, Vincent I, Wang X, Mao Z, Park DS (2006) Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci 26(2):440–447. doi:10.​1523/​jneurosci.​ 2875-05.​2006 CrossRef PubMed
    32.Devanand DP, Michaels-Marston KS, Liu X, Pelton GH, Padilla M, Marder K, Bell K, Stern Y, Mayeux R (2000) Olfactory deficits in patients with mild cognitive impairment predict Alzheimer’s disease at follow-up. Am J Psychiatry 157(9):1399–1405CrossRef PubMed
    33.Rahayel S, Frasnelli J, Joubert S (2012) The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: a meta-analysis. Behav Brain Res %/ Copyright (c) 2012 Elsevier B.V. All rights reserved(1):60–74. doi:10.​1016/​j.​bbr.​2012.​02.​047 , %/ Copyright (c) 2012 Elsevier B.V. All rights reservedCrossRef
    34.Kovacs T (2004) Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res Rev 3(2):215–232. doi:10.​1016/​j.​arr.​2003.​10.​003 , %/ Copyright 2003 Elsevier Ireland LtdCrossRef PubMed
    35.Wesson DW, Levy E, Nixon RA, Wilson DA (2010) Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer’s disease mouse model. J Neurosci 30(2):505–514. doi:10.​1523/​jneurosci.​ 4622-09.​2010 CrossRef PubMed PubMedCentral
    36.Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2(10):749–759. doi:10.​1038/​35096019 CrossRef PubMed
    37.Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371(6496):423–426. doi:10.​1038/​371423a0 CrossRef PubMed
    38.Tsai LH, Delalle I, Caviness VJ, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423. doi:10.​1038/​371419a0 CrossRef PubMed
    39.Tang D, Yeung J, Lee KY, Matsushita M, Matsui H, Tomizawa K, Hatase O, Wang JH (1995) An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator. J Biol Chem 270(45):26897–26903CrossRef PubMed
    40.Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna PHC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93(20):11173–11178CrossRef PubMed PubMedCentral
    41.Gilmore EC, Ohshima T, Goffinet AM, Kulkarni AB, Herrup K (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18(16):6370–6377PubMed
    42.Ohshima T, Gilmore EC, Longenecker G, Jacobowitz DM, Brady RO, Herrup K, Kulkarni AB (1999) Migration defects of cdk5(−/−) neurons in the developing cerebellum is cell autonomous. J Neurosci 19(14):6017–6026PubMed
    43.Cheung ZH, Gong K, Ip NY (2008) Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci 28(19):4872–4877. doi:10.​1523/​jneurosci.​ 0689-08.​2008 CrossRef PubMed
    44.Ikiz B, Przedborski S (2008) A sequel to the tale of p25/Cdk5 in neurodegeneration. Neuron 60(5):731–732. doi:10.​1016/​j.​neuron.​2008.​11.​020 CrossRef PubMed
    45.Cheung ZH, Ip NY (2012) Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22(3):169–175. doi:10.​1016/​j.​tcb.​2011.​11.​003 , %/ Copyright (c) 2011 Elsevier Ltd. All rights reservedCrossRef PubMed
    46.Mattson MP (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77(4):1081–1132PubMed
    47.Wang JZ, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85(2):148–175. doi:10.​1016/​j.​pneurobio.​2008.​03.​002 CrossRef PubMed
    48.Imahori K, Uchida T (1997) Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem 121(2):179–188PubMed
    49.Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna NR, Dickson D, Matsuoka Y, Ahlijanian M, Lau LF, Duff K (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38(4):555–565CrossRef PubMed
    50.Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622. doi:10.​1038/​45159 CrossRef PubMed
    51.Hung KS, Hwang SL, Liang CL, Chen YJ, Lee TH, Liu JK, Howng SL, Wang CH (2005) Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats. J Neuropathol Exp Neurol 64(1):15–26PubMed
    52.Pei JJ, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF (1998) Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration. Brain Res 797(2):267–277CrossRef PubMed
    53.Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14(4):879–888CrossRef PubMed
    54.Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150(4):887–894CrossRef PubMed PubMedCentral
    55.Alvarez A, Toro R, Caceres A, Maccioni RB (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents beta-amyloid-induced neuronal death. FEBS Lett 459(3):421–426CrossRef PubMed
    56.Hu J, Huang HZ, Wang X, Xie AJ, Wang X, Liu D, Wang JZ, Zhu LQ (2014) Activation of glycogen synthase kinase-3 mediates the olfactory deficit-induced hippocampal impairments. Mol Neurobiol. doi:10.​1007/​s12035-014-8953-9
    57.LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–872. doi:10.​1038/​nrn960 CrossRef PubMed
    58.Sapolsky RM (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1(1):1–19CrossRef PubMed
    59.Goodman Y, Bruce AJ, Cheng B, Mattson MP (1996) Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid beta-peptide toxicity in hippocampal neurons. J Neurochem 66(5):1836–1844CrossRef PubMed
    60.Johnson EA, O’Callaghan JP, Miller DB (2002) Chronic treatment with supraphysiological levels of corticosterone enhances D-MDMA-induced dopaminergic neurotoxicity in the C57BL/6J female mouse. Brain Res 933(2):130–138CrossRef PubMed
    61.Cottin P, Brustis JJ, Poussard S, Elamrani N, Broncard S, Ducastaing A (1994) Ca(2+)-dependent proteinases (calpains) and muscle cell differentiation. Biochim Biophys Acta 1223(2):170–178CrossRef PubMed
    62.Muthuraman P, Ravikumar S, Muthuviveganandavel V, Kim J (2014) Effect of cortisol on calpains in the C2C12 and 3 T3-L1 cells. Appl Biochem Biotechnol 172(6):3153–3162. doi:10.​1007/​s12010-014-0753-1 CrossRef PubMed
    63.Song C, Zhang XY, Manku M (2009) Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J Neurosci 29(1):14–22. doi:10.​1523/​jneurosci.​ 3569-08.​2009 CrossRef PubMed
    64.Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 588(2):341–345CrossRef PubMed
    65.de Quervain DJ, Roozendaal B, McGaugh JL (1998) Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394(6695):787–790. doi:10.​1038/​29542 CrossRef PubMed
    66.Liston C, Cichon JM, Jeanneteau F, Jia Z, Chao MV, Gan WB (2013) Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 16(6):698–705. doi:10.​1038/​nn.​3387 CrossRef PubMed PubMedCentral
    67.Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM (2006) Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26(35):9047–9056. doi:10.​1523/​jneurosci.​ 2797-06.​2006 CrossRef PubMed
    68.Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190CrossRef PubMed
    69.Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35 (6):1397–1409. doi:10.​1016/​j.​neubiorev.​2011.​03.​001 %/ Copyright (c) 2011 Elsevier Ltd. All rights reserved.
    70.Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2(8000):1403CrossRef PubMed
    71.Richter JA, Perry EK, Tomlinson BE (1980) Acetylcholine and choline levels in post-mortem human brain tissue: preliminary observations in Alzheimer’s disease. Life Sci 26(20):1683–1689CrossRef PubMed
    72.Riascos D, Nicholas A, Samaeekia R, Yukhananov R, Mesulam MM, Bigio EH, Weintraub S, Guo L, Geula C (2014) Alterations of Ca(2)(+)-responsive proteins within cholinergic neurons in aging and Alzheimer’s disease. Neurobiol Aging 35(6):1325–1333. doi:10.​1016/​j.​neurobiolaging.​2013.​12.​017 , %/ Copyright (c) 2014 Elsevier Inc. All rights reservedCrossRef PubMed PubMedCentral
    73.Hisanaga S, Endo R (2010) Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 115(6):1309–1321. doi:10.​1111/​j.​1471-4159.​2010.​07050.​x , %/ (c) 2010 The Authors. Journal of Neurochemistry (c) 2010 International Society for NeurochemistryCrossRef PubMed
    74.Lee B, Sur BJ, Kwon S, Jung E, Shim I, Lee H, Hahm DH (2012) Acupuncture stimulation alleviates corticosterone-induced impairments of spatial memory and cholinergic neurons in rats. Evid Based Complement Alternat Med 2012:670536. doi:10.​1155/​2012/​670536 PubMed PubMedCentral
  • 作者单位:Ke Li (1)
    Fang-Fang Liu (1)
    Chun-Xue He (1)
    He-Zhou Huang (1)
    Ao-Ji Xie (1)
    Fan Hu (1)
    Dan Liu (1)
    Jian-Zhi Wang (1)
    Ling-Qiang Zhu (1)

    1. Pathophysiology Department, Key Laboratory of Neurological Disease of Education Committee of China, China-Canada Cooperation Platform on Neurological Disorder, Institute of Brain Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Olfactory dysfunction is a recognized risk factor for the pathogenesis of Alzheimer’s disease (AD), while the mechanisms are still not clear. Here, we applied bilateral olfactory bulbectomy (OBX), an olfactory deprivation surgery to cause permanent anosmia, in human tau-overexpressed mice (htau mice) to investigate changes of AD-like pathologies including aggregation of abnormally phosphorylated tau and cholinergic neuron loss. We found that tau phosphorylation in hippocampus was increased at Thr-205, Ser-214, Thr-231, and Ser-396 after OBX. OBX also increased the level of sarkosyl-insoluble Tau at those epitopes and accelerated accumulation of somatodendritic tau. Moreover, OBX resulted in the elevation of calpain activity accompanied by an increased expression of the cyclin-dependent kinase 5 (cdk5) neuronal activators, p35 and p25, in hippocampus. Furthermore, OBX induces the loss of the cholinergic neurons in medial septal. Administration of cdk5 pharmacological inhibitor roscovitine into lateral ventricles suppressed tau hyperphosphorylation and mislocalization and restored the cholinergic neuron loss. These findings suggest that olfactory deprivation by OBX hastens tau pathology and cholinergic system impairment in htau mice possibly via activation of cdk5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700