TM6, a novel nuclear matrix attachment region, enhances its flanking gene expression through influencing their chromatin structure
详细信息    查看全文
  • 作者:Lusha Ji (1) (2)
    Rui Xu (1)
    Longtao Lu (1) (3)
    Jiedao Zhang (1)
    Guodong Yang (1)
    Jinguang Huang (1)
    Changai Wu (1)
    Chengchao Zheng (1)
  • 关键词:chromatin accessibility ; DNA methylation ; matrix attachment regions ; transcription activation ; transformation
  • 刊名:Molecules and Cells
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:36
  • 期:2
  • 页码:127-137
  • 全文大小:1252KB
  • 参考文献:1. Ascenzi, R., Ingram, J.L., Massel, M., Thompson, W.F., Spiker, S., and Weissinger, A.K. (2001). The role of cell differentiation state and HMG-I/Y in the expression of transgenes flanked by matrix attachment regions. Transgenic Res. / 10, 465鈥?70. CrossRef
    2. Avramova, Z., SanMiguel, P., Georgieva, E., and Bennetzen, J.L. (1995). Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell / 7, 1667鈥?680.
    3. Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C., and Kohwi-Shigematsu, T. (1992). Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science / 255, 195鈥?97. CrossRef
    4. Bode, J., Goetze, S., Heng, H., Krawetz, S.A., and Benham, C. (2003). From DNA structure to gene expression: mediators of nuclear compartmentalization and dynamics. Chromosome Res. / 11, 435鈥?45. CrossRef
    5. Brouwer, C., Bruce, W., Maddock, S., Avramova, Z., and Bowen, B. (2002). Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5鈥?ADH1 matrix attachment region. Plant Cell / 14, 2251鈥?264. CrossRef
    6. Cato, L., Stott, K., Watson, M., and Thomas, J.O. (2008). The interaction of HMGB1 and linker histones occurs through their acidic and basic tails. J. Mol. Biol. / 384, 1262鈥?272. CrossRef
    7. Chinnusamy, V., and Zhu, J.K. (2009). RNA-directed DNA methylation and demethylation in plants. Sci. China C Life Sci. / 52, 331鈥?43. CrossRef
    8. Chong, S., Kontaraki, J., Bonifer, C., and Riggs, A.D. (2002). A Functional chromatin domain does not resist X chromosome inactivation: silencing of cLys correlates with methylation of a dual promoter-replication origin. Mol. Cell. Biol. / 22, 4667鈥?676. CrossRef
    9. El Gazzar, M., Yoza, B.K., Chen, X., Garcia, B.A., Young, N.L., and McCall, C.E. (2009). Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol. Cell. Biol. / 29, 1959鈥?971. CrossRef
    10. Ellies, D.L., and Krumlauf, R. (2006). Bone formation: the nuclear matrix reloaded. Cell / 125, 840鈥?42. CrossRef
    11. Ellis, G.C., Grobler-Rabie, A.F., Hough, F.S., and Bester, A.J. (1988). Location and methylation pattern of a nuclear matrix associated region in the human pro alpha 2(I) collagen gene. Biochem. Biophys. Res. Commun. / 157, 500鈥?06. CrossRef
    12. Fernandez, L.A., Winkler, M., and Grosschedl, R. (2001). Matrix attachment region-dependent function of the immunoglobulin mu enhancer involves histone acetylation at a distance without changes in enhancer occupancy. Mol. Cell. Biol. / 21, 196鈥?08. CrossRef
    13. Finnegan, E.J., Genger, R.K., Peacock, W.J., and Dennis, E.S. (1998). DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. / 49, 223鈥?47. CrossRef
    14. Fiorini, A., Gouveia Fde, S., and Fernandez, M.A. (2006). Scaffold/Matrix Attachment Regions and intrinsic DNA curvature. Biochemistry (Mosc.) / 71, 481鈥?88. CrossRef
    15. Forrester, W.C., van Genderen, C., Jenuwein, T., and Grosschedl, R. (1994). Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science / 265, 1221鈥?225. CrossRef
    16. Forrester, W.C., Fernandez, L.A., and Grosschedl, R. (1999). Nuclear matrix attachment regions antagonize methylation-dependent repression of long-range enhancer-promoter interactions. Genes Dev. / 13, 3003鈥?014. CrossRef
    17. Fujimoto, S., Matsunaga, S., Yonemura, M., Uchiyama, S., Azuma, T., and Fukui, K. (2004). Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Mol. Biol. / 56, 225鈥?39. CrossRef
    18. Fukuda, Y., and Nishikawa, S. (2003). Matrix attachment regions enhance transcription of a downstream transgene and the accessibility of its promoter region to micrococcal nuclease. Plant Mol. Biol. / 51, 665鈥?75. CrossRef
    19. Gindullis, F., Peffer, N.J., and Meier, I. (1999). MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope. Plant Cell / 11, 1755鈥?768.
    20. Girod, P.A., Nguyen, D.Q., Calabrese, D., Puttini, S., Grandjean, M., Martinet, D., Regamey, A., Saugy, D., Beckmann, J.S., Bucher, P., et al. (2007). Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat. Methods / 4, 747鈥?53. CrossRef
    21. Gombert, W.M., Farris, S.D., Rubio, E.D., Morey-Rosler, K.M., Schubach, W.H., and Krumm, A. (2003). The c-myc insulator element and matrix attachment regions define the c-myc chromosomal domain. Mol. Cell. Biol. / 23, 9338鈥?348. CrossRef
    22. Gong, Z., Morales-Ruiz, T., Ariza, R.R., Roldan-Arjona, T., David, L., and Zhu, J.K. (2002). ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell / 111, 803鈥?14. CrossRef
    23. Grasser, M., Lentz, A., Lichota, J., Merkle, T., and Grasser, K.D. (2006). The Arabidopsis genome encodes structurally and functionally diverse HMGB-type proteins. J. Mol. Biol. / 358, 654鈥?64. CrossRef
    24. Griswold, M.D., and Kim, J.S. (2001). Site-specific methylation of the promoter alters deoxyribonucleic acid-protein interactions and prevents follicle-stimulating hormone receptor gene transcription. Biol. Reprod. / 64, 602鈥?10. CrossRef
    25. Halweg, C., Thompson, W.F., and Spiker, S. (2005). The rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. Plant Cell / 17, 418鈥?29. CrossRef
    26. Han, H.J., Russo, J., Kohwi, Y., and Kohwi-Shigematsu, T. (2008). SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature / 452, 187鈥?93. CrossRef
    27. Harder, P.A., Silverstein, R.A., and Meier, I. (2000). Conservation of matrix attachment region-binding filament-like protein 1 among higher plants. Plant Physiol. / 122, 225鈥?34. CrossRef
    28. Hatton, D., and Gray, J.C. (1999). Two MAR DNA-binding proteins of the pea nuclear matrix identify a new class of DNA-binding proteins. Plant J. / 18, 417鈥?29. CrossRef
    29. He, X.J., Chen, T., and Zhu, J.K. (2011). Regulation and function of DNA methylation in plants and animals. Cell Res. / 21, 442鈥?65. CrossRef
    30. Heng, H.H., Krawetz, S.A., Lu, W., Bremer, S., Liu, G., and Ye, C.J. (2001). Re-defining the chromatin loop domain. Cytogenet. Cell Genet. / 93, 155鈥?61. CrossRef
    31. Heng, H.H., Goetze, S., Ye, C.J., Liu, G., Stevens, J.B., Bremer, S.W., Wykes, S.M., Bode, J., and Krawetz, S.A. (2004). Chromatin loops are selectively anchored using scaffold/matrixattachment regions. J. Cell Sci. / 117, 999鈥?008. CrossRef
    32. Iarovaia, O.V., Akopov, S.B., Nikolaev, L.G., Sverdlov, E.D., and Razin, S.V. (2005). Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix. Nucleic Acids Res. / 33, 4157鈥?163. CrossRef
    33. Jeong, S.Y., Rose, A., and Meier, I. (2003). MFP1 is a thylakoidassociated, nucleoid-binding protein with a coiled-coil structure. Nucleic Acids Res. / 31, 5175鈥?185. CrossRef
    34. Lawton, B.R., Carone, B.R., Obergfell, C.J., Ferreri, G.C., Gondolphi, C.M., Vandeberg, J.L., Imumorin, I., O鈥橬eill, R.J., and O鈥橬eill, M.J. (2008). Genomic imprinting of IGF2 in marsupials is methylation dependent. BMC Genomics / 9, 205. CrossRef
    35. Li, L.C., and Dahiya, R. (2002). MethPrimer: designing primers for methylation PCRs. Bioinformatics / 18, 1427鈥?431. CrossRef
    36. Li, J., Brunner, A.M., Meilan, R., and Strauss, S.H. (2008). Matrix attachment region elements have small and variable effects on transgene expression and stability in field-grown Populus. Plant Biotechnol. J. / 6, 887鈥?96. CrossRef
    37. Liu, Q., Wang, J., Miki, D., Xia, R., Yu, W., He, J., Zheng, Z., Zhu, J. K., and Gong, Z. (2010). DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis. Plant Cell / 22, 2336鈥?352. CrossRef
    38. Loc, P.V., and Stratling, W.H. (1988). The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO J. / 7, 655鈥?64.
    39. Luderus, M.E., de Graaf, A., Mattia, E., den Blaauwen, J.L., Grande, M.A., de Jong, L., and van Driel, R. (1992). Binding of matrix attachment regions to lamin B1. Cell / 70, 949鈥?59. CrossRef
    40. Meier, I., Phelan, T., Gruissem, W., Spiker, S., and Schneider, D. (1996). MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA. Plant Cell / 8, 2105鈥?115.
    41. Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., and Matzke, A.J. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J. / 19, 5194鈥?201. CrossRef
    42. Mishiba, K., Nishihara, M., Nakatsuka, T., Abe, Y., Hirano, H., Yokoi, T., Kikuchi, A., and Yamamura, S. (2005). Consistent transcriptional silencing of 35S-driven transgenes in gentian. Plant J. / 44, 541鈥?56. CrossRef
    43. Mlynarova, L., Jansen, R.C., Conner, A.J., Stiekema, W.J., and Nap, J.P. (1995). The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell / 7, 599鈥?09.
    44. Mlynarova, L., Hricova, A., Loonen, A., and Nap, J.P. (2003). The presence of a chromatin boundary appears to shield a transgene in tobacco from RNA silencing. Plant Cell / 15, 2203鈥?217. CrossRef
    45. Morisawa, G., Han-Yama, A., Moda, I., Tamai, A., Iwabuchi, M., and Meshi, T. (2000). AHM1, a novel type of nuclear matrix-localized, MAR binding protein with a single AT hook and a J domainhomologous region. Plant Cell / 12, 1903鈥?916.
    46. Namciu, S.J., and Fournier, R.E. (2004). Human matrix attachment regions are necessary for the establishment but not the maintenance of transgene insulation in Drosophila melanogaster. Mol. Cell. Biol. / 24, 10236鈥?0245. CrossRef
    47. Odell, J.T., Nagy, F., and Chua, N.H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature / 313, 810鈥?12. CrossRef
    48. Paul, A.L., and Ferl, R.J. (1998). Higher order chromatin structures in maize and Arabidopsis. Plant Cell / 10, 1349鈥?359.
    49. Penterman, J., Zilberman, D., Huh, J.H., Ballinger, T., Henikoff, S., and Fischer, R.L. (2007). DNA demethylation in the Arabidopsis genome. Proc. Natl. Acad. Sci. USA / 104, 6752鈥?757. CrossRef
    50. Petrov, A., Pirozhkova, I., Carnac, G., Laoudj, D., Lipinski, M., and Vassetzky, Y.S. (2006). Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts. Proc. Natl. Acad. Sci. USA / 103, 6982鈥?987. CrossRef
    51. Pikaart, M.J., Recillas-Targa, F., and Felsenfeld, G. (1998). Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev. / 12, 2852鈥?862. CrossRef
    52. Purbowasito, W., Suda, C., Yokomine, T., Zubair, M., Sado, T., Tsutsui, K., and Sasaki, H. (2004). Large-scale identification and mapping of nuclear matrix-attachment regions in the distal imprinted domain of mouse chromosome 7. DNA Res. / 11, 391鈥?07. CrossRef
    53. Rao, S., Procko, E., and Shannon, M.F. (2001). Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene. J. Immunol. / 167, 4494鈥?503.
    54. Shan, D.P., Huang, J.G., Yang, Y.T., Guo, Y.H., Wu, C.A., Yang, G.D., Gao, Z., and Zheng, C.C. (2007). Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol. / 176, 70鈥?1. CrossRef
    55. Shewchuk, B.M., Cooke, N.E., and Liebhaber, S.A. (2001). The human growth hormone locus control region mediates longdistance transcriptional activation independent of nuclear matrix attachment regions. Nucleic Acids Res. / 29, 3356鈥?361. CrossRef
    56. Sidorenko, L., Bruce, W., Maddock, S., Tagliani, L., Li, X., Daniels, M., and Peterson, T. (2003). Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plants. Transgenic Res. / 12, 137鈥?54. CrossRef
    57. Stief, A., Winter, D.M., Stratling, W.H., and Sippel, A.E. (1989). A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature / 341, 343鈥?45. CrossRef
    58. Tikhonov, A.P., Bennetzen, J.L., and Avramova, Z.V. (2000). Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Plant Cell / 12, 249鈥?64.
    59. Villagra, A., Gutierrez, J., Paredes, R., Sierra, J., Puchi, M., Imschenetzky, M., van Wijnen, A., Lian, J., Stein, G., Stein, J., et al. (2002). Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J. Cell. Biochem. / 85, 112鈥?22. CrossRef
    60. Wolffe, A.P. (1995). Chromatin: structure and function. 2nd ed., (London: Academic Press).
    61. Xue, H., Yang, Y.T., Wu, C.A., Yang, G.D., Zhang, M.M., and Zheng, C.C. (2005). TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theor. Appl. Genet. / 110, 620鈥?27. CrossRef
    62. Yamasaki, K., Akiba, T., Yamasaki, T., and Harata, K. (2007). Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1. Nucleic Acids Res. / 35, 5073鈥?084. CrossRef
    63. Yan, K., Liu, P., Wu, C.A., Yang, G.D., Xu, R., Guo, Q.H., Huang, J.G., and Zheng, C.C. (2012). Stress-induced alternative splicing provides a mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol. Cell / 48, 521鈥?31. CrossRef
    64. Yang, Y.T., Yu, Y.L., Yang, G.D., Zhang, J.D., and Zheng, C.C. (2009). Tissue-specific expression of the PNZIP promoter is mediated by combinatorial interaction of different cis-elements and a novel transcriptional factor. Nucleic Acids Res. / 37, 2630鈥?644. CrossRef
    65. Zhang, K.W., Wang, J.M., and Zheng, C.C. (2004). The potential role of nuclear matrix attachment regions (MARs) in regulation of gene expression. Sheng Wu Gong Cheng Xue Bao / 20, 6鈥?.
    66. Zhang, M.M., Ji, L.S., Xue, H., Yang, Y.T., Wu, C.A., and Zheng, C.C. (2007). High transformation frequency of tobacco and rice / via Agrobacterium-mediated gene transfer by flanking a tobacco matrix attachment region. Physiol. Plant / 129, 644鈥?51. CrossRef
    67. Zhang, J., Lu, L., Ji, L., Yang, G., and Zheng, C. (2009). Functional characterization of a tobacco matrix attachment region-mediated enhancement of transgene expression. Transgenic Res. / 18, 377鈥?85. CrossRef
    68. Zheng, C.C., Porat, R., Lu, P., and O鈥橬eill., S.D. (1998). PNZIP is a novel mesophyll-specific cDNA that is regulated by phytochrome and the circadian rhythm and encodes a protein with a leucine zipper motif. Plant Physiol. / 116, 27鈥?5. CrossRef
    69. Zlatanova, J., Caiafa, P., and Van Holde, K. (2000). Linker histone binding and displacement: versatile mechanism for transcriptional regulation. FASEB J. / 14, 1697鈥?704. CrossRef
  • 作者单位:Lusha Ji (1) (2)
    Rui Xu (1)
    Longtao Lu (1) (3)
    Jiedao Zhang (1)
    Guodong Yang (1)
    Jinguang Huang (1)
    Changai Wu (1)
    Chengchao Zheng (1)

    1. State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P.R. China
    2. College of Life Sciences, Liaocheng University, Liaocheng, Shandong, 252059, P.R. China
    3. Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong, 261061, P.R.China
  • ISSN:0219-1032
文摘
Nuclear matrix attachment regions (MARs) regulate the higher-order organization of chromatin and affect the expression of their flanking genes. In this study, a tobacco MAR, TM6, was isolated and demonstrated to remarkably increase the expression of four different promoters that drive gusA gene and adjacent nptII gene. In turn, this expression enhanced the transformation frequency of transgenic tobacco. Deletion analysis of topoisomerase IIbinding site, AT-rich element, and MAR recognition signature (MRS) showed that MRS has the highest contribution (61.7%) to the TM6 sequence-mediated transcription activation. Micrococcal nuclease (MNase) accessibility assay showed that 35S and NOS promoter regions with TM6 are more sensitive than those without TM6. The analysis also revealed that TM6 reduces promoter DNA methylation which can affect the gusA expression. In addition, two tobacco chromatin-associated proteins, NtMBP1 and NtHMGB, isolated using a yeast one-hybrid system, specifically bound to the TM6II-1 region (761 bp to 870 bp) and to the MRS element in the TM6II-2 (934 bp to 1,021 bp) region, respectively. We thus suggested that TM6 mediated its chromatin opening and chromatin accessibility of its flanking promoters with consequent enhancement of transcription.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700