Stability of the rarefaction wave for a two-fluid plasma model with diffusion
详细信息    查看全文
  • 作者:RenJun Duan ; ShuangQian Liu ; HaiYan Yin ; ChangJiang Zhu
  • 关键词:two ; fluid plasma model ; rarefaction wave ; stability ; 35B35 ; 35B40 ; 35Q35 ; 82D10
  • 刊名:SCIENCE CHINA Mathematics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:59
  • 期:1
  • 页码:67-84
  • 全文大小:283 KB
  • 参考文献:1.Chen F. Introduction to Plasma Physics and Controlled Fusion. 2nd ed. New York: Plenum Press, 1984CrossRef
    2.Donatelli D. Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart Appl Math, 2003; 61: 345–361MathSciNet MATH
    3.Donatelli D, Marcati P. A quasineutral type limit for the Navier-Stokes-Poisson system with large data. Nonlinearity, 2008; 21: 135–148MathSciNet CrossRef MATH
    4.Duan R J, Liu S Q. Global stability of rarefaction waves of the Navier-Stokes-Poisson system. J Differential Equations, 2015; 258: 2495–2530MathSciNet CrossRef MATH
    5.Duan R J, Liu S Q. Global stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system. ArXiv:1405.2522, 2014
    6.Duan R J, Yang X F. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Commun Pure Appl Anal, 2013; 12: 985–1014.MathSciNet CrossRef MATH
    7.Ducomet B. A remark about global existence for the Navier-Stokes-Poisson system. Appl Math Lett, 1999; 12: 31–37MathSciNet CrossRef MATH
    8.Guo Y, Pausader B. Global smooth ion dynamics in the Euler-Poisson system. Comm Math Phys, 2011; 303: 89–125MathSciNet CrossRef MATH
    9.Ju Q C, Li F C, Li H L. quasineutral limit of compressible Navier-Stokes-Poisson system with heat conductivity and general initial data. J Differential Equations, 2009; 247: 203–224MathSciNet CrossRef MATH
    10.Kawashima S, Matsumura A, Nishihara K. Asymptotic behaviour of solutions for the equations of a viscous heatconductive gas. Proc Japan Acad Ser A, 1986; 62: 249–252MathSciNet CrossRef MATH
    11.Li H L, Matsumura A, Zhang G J. Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3. Arch Ration Mech Anal, 2010; 196: 681–713MathSciNet CrossRef MATH
    12.Lin Y Q, Hao C C, Li H L. Global well-posedness of compressible bipolar Navier-Stokes-Poisson equations. Acta Math Sin Engl Ser, 2012; 28: 925–940MathSciNet CrossRef MATH
    13.Liu J, Lian R X, Qian M F. Global existence of solution to a bipolar Navier-Stokes-Poisson system (in Chinese). Acta Math Sci Ser A Chin Ed, 2014; 34: 960–976MathSciNet
    14.Liu S Q, Yin H Y, Zhu C J. Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary. ArXiv:1508.01405, 2015
    15.Liu T P, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1988; 118: 451–465MathSciNet CrossRef MATH
    16.Markowich P A, Ringhofer C A, Schmeiser C. Semiconductor Equations. New York: Springer, 1990CrossRef MATH
    17.Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986; 3: 1–13MathSciNet CrossRef MATH
    18.Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992; 144: 325–335MathSciNet CrossRef MATH
    19.Smoller J. Shock Waves and Reaction-Diffusion Equations. New York-Berlin: Springer-Verlag, 1983CrossRef MATH
    20.Tan Z, Yang T, Zhao H J, et al. Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data. SIAM J Math Anal, 2013; 45: 547–571MathSciNet CrossRef MATH
    21.Wang S, Jiang S. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm Partial Differential Equations, 2006; 31: 571–591MathSciNet CrossRef MATH
    22.Yin H Y, Zhang J S, Zhu C J. Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system. ArXiv:1508.01411, 2015
    23.Zhang G J, Li H L, Zhu C J. Optimal decay rate of the non-isentropic compressible Navier- Stokes-Poisson system in R3. J Differential Equations, 2011; 250: 866–891MathSciNet CrossRef MATH
    24.Zhang Y H, Tan Z. On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math Methods Appl Sci, 2007; 30: 305–329MathSciNet CrossRef MATH
    25.Zhou F, Li Y P. Convergence rate of solutions toward stationary solutions to the bipolar Navier-Stokes-Poisson equations in a half line. Bound Value Probl, 2013, 124: 22pp
  • 作者单位:RenJun Duan (1)
    ShuangQian Liu (2)
    HaiYan Yin (3)
    ChangJiang Zhu (4)

    1. Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, 999077, China
    2. Department of Mathematics, Jinan University, Guangzhou, 510632, China
    3. School of Mathematical Sciences, Huaqiao University, Quanzhou, 362021, China
    4. School of Mathematics, South China University of Technology, Guangzhou, 510641, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Chinese Library of Science
    Applications of Mathematics
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1862
文摘
We study the large-time asymptotics of solutions toward the weak rarefaction wave of the quasineutral Euler system for a two-fluid plasma model in the presence of diffusions of velocity and temperature under small perturbations of initial data and also under an extra assumption $$\frac{{\theta _{i, + } }} {{\theta _{e, + } }} = \frac{{\theta _{i, - } }} {{\theta _{e, - } }} \geqslant \frac{{m_i }} {{2m_e }}, $$

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700