Molecular Characterization, Expression Profile, and Association Study with Meat Quality Traits of Porcine PFKM Gene
详细信息    查看全文
  • 作者:Jun Wang (1)
    Liang Qin (3)
    Yanping Feng (2) (4)
    Rong Zheng (2) (4)
    Changyan Deng (2) (4)
    Yuanzhu Xiong (2) (4)
    Bo Zuo (2) (4)
  • 关键词:Porcine ; PFKM ; Expression profile ; SNP ; Association analysis ; Meat quality
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:173
  • 期:7
  • 页码:1640-1651
  • 全文大小:1,442 KB
  • 参考文献:1. Uyeda, K. (1979). Phosphofructokinase. / Advances in Enzymology and Related Areas of Molecular Biology, 48, 193-44.
    2. Vora, S., Miranda, A. F., Hernandez, E., & Francke, U. (1983). Regional assignment of the human gene for platelet-type phosphofructokinase (PFKP) to chromosome 10p: novel use of polyspecific rodent antisera to localize human enzyme genes. / Human Genetics, 63, 374-79.
    3. Van Keuren, M., Drabkin, H., Hart, I., Harker, D., Patterson, D., & Vora, S. (1986). Regional assignment of human liver-type 6-phosphofructokinase to chromosome 21q22.3 by using somatic cell hybrids and a monoclonal anti-L antibody. / Human Genetics, 74, 34-0.
    4. Howard, T. D., Akots, G., & Bowden, D. W. (1996). Physical and genetic mapping of the muscle phosphofructokinase gene (PFKM): reassignment to human chromosome 12q. / Genomics, 34, 122-27.
    5. Dunaway, G. A., Kasten, T. P., Sebo, T., & Trapp, R. (1988). Analysis of the phosphofructokinase subunits and isoenzymes in human tissues. / Biochemical Journal, 251, 677-83.
    6. Sola-Penna, M., Da Silva, D., Coelho, W. S., Marinho-Carvalho, M. M., & Zancan, P. (2010). Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism. / International Union of Biochemistry and Molecular Biology Life, 62, 791-96.
    7. Nakajima, H., Noguchi, T., Yamasaki, T., Kono, N., Tanaka, T., & Tarui, S. (1987). Cloning of human muscle phosphofructokinase cDNA. / FEBS Letters, 223, 113-16.
    8. Yamasaki, Nakajima, H., Kono, N., Hotta, K., Yamada, K., Imai, E., et al. (1991). Structure of the entire human muscle phosphofructokinase-encoding gene: a two-promoter system. / Gene, 104, 277-82.
    9. Ashley, P. L., Flandermeyer, R. R., & Cox, D. R. (1986). Identification of novel phosphofructokinase loci in mouse and man. / American Journal of Human Genetics, 39, A186.
    10. Beitner, R. (1993). Control of glycolytic enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions. The role of Ca21 and calmodulin. / International Journal of Biochemistry, 25, 297-05.
    11. Lehotzky, A., Telegdi, M., Liliom, K., & Ovadi, J. (1993). Interaction of phosphofructokinase with tubulin and microtubules. Quantitative evaluation of the mutual effects. / The Journal of Biological Chemistry, 268, 10888-0894.
    12. Vertessy, B. G., Kovacs, J., & Ovadi, J. (1996). Specific characteristics of phosphofructokinase-microtubule interaction. / FEBS Letters, 379, 191-95.
    13. Assouline-Cohen, M., & Beitner, R. (1999). Effects of Ca2+ on erythrocyte membrane skeleton-bound phosphofructokinase, ATP levels, and hemolysis. / Molecular Genetics and Metabolism, 66, 56-1.
    14. Masters, C. (1984). Interactions between glycolytic enzymes and components of the cytomatrix. / The Journal of Cell Biology, 99, 222s-25s.
    15. Campanella, M. E., Chu, H., & Low, P. S. (2005). Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. / Proceedings of the National Academy Science of the United States of American, 102, 2402-407.
    16. Scherer, P. E., & Lisanti, M. P. (1997). Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. Dynamic regulation by extracellular glucose and intracellular metabolites. / The Journal of Biological Chemistry, 272, 20698-0705.
    17. Davoli, R., Fontanesi, L., Zambonelli, P., Bigi, D., Gellin, J., Yerle, M., et al. (2002). Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. / Animal Genetics, 33, 3-8.
    18. Fontanesi, L., Davoli, R., Zijlstra, C., Bosma, A. A., & Russo, V. (1999). Mapping of the Na+, K+-ATPase subunit α 2 ( ATP1A2) and muscle phosphofructokinase (PFKM) genes in pig by somatic cell hybrid analysis. / Animal Genetics, 30, 57-0.
    19. Pertek, A. (2011). / QTL and candidate gene analysis of energy and lipid metabolism in swine. Dissertation. Munich: University of Munich.
    20. Rückert, C., & Bennewitz, J. (2010). Joint QTL analysis of three connected F2-crosses in pigs. / Genetics Selection Evolution, 42, 40.
    21. Lee, G. J., Archibald, A. L., Law, A. S., Lloyd, S., Wood, J., & Haley, C. S. (2005). Detection of quantitative trait loci for androstenone, skatole and boar taint in a cross between Large White and Meishan pigs. / Animal Genetics, 36, 14-2.
    22. Xiong, Y. Z., & Deng, C. Y. (1999). / Principle and method of swine testing. Beijing: Chinese Agriculture.
    23. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). / Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory.
    24. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucleic Acids Research, 25, 3389-402.
    25. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTRAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. / Nucleic Acids Research, 22, 4673-680.
    26. Burge, C., & Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. / Journal of Molecular Biology, 268, 78-4.
    27. Sigrist, C. J. A., Cerutti, L., de Castro, E., Langendijk-Genevaux, P. S., Bulliard, V., Bairoch, A., et al. (2010). PROSITE, a protein domain database for functional characterization and annotation. / Nucleic Acids Research, 38, 161-66.
    28. Kumar, S., Tamura, K., & Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. / Briefings in Bioinformatics, 5, 150-63.
    29. DNASTAR. (2001). / Lasergene expert sequence analysis software. User's manual. Version 5. Wisconsin: DNASTAR Inc.
    30. Wang, L., Xiong, Y. Z., Zuo, B., Lei, M. G., Ren, Z. Q., & Xu, D. Q. (2012). Molecular and functional characterization of glycogen synthase in the porcine satellite cells under insulin treatment. / Molecular and Cellular Biochemistry, 360, 169-80.
    31. Wang, J., Deng, C. Y., Xiong, Y. Z., & Zuo, B. (2012). Association analysis of polymorphism in intron-10 of porcine HK2 gene with meat quality and carcass traits. / Journal of Animal and Veterinary Advances, 11, 1158-161.
    32. Raben, N., Exelbert, R., Spiegel, R., Sherman, J. B., Nakajima, H., Plotz, P., et al. (1995). Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency. / The American Journal of Human Genetics, 56, 131-41.
    33. Wegener, G., & Krause, U. (2002). Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. / Biochemical Society Transactions, 30, 264-70.
    34. Zielinska, D. F., Gnad, F., Schropp, K., Wi?niewski, J. R., & Mann, M. (2012). Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. / Molecular Cell, 46, 542-48.
    35. Yi, W., Clark, P. M., Mason, D. E., Keenan, M. C., Hill, C., Goddard, W. A., 3rd, et al. (2012). Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. / Science, 337, 975-80.
  • 作者单位:Jun Wang (1)
    Liang Qin (3)
    Yanping Feng (2) (4)
    Rong Zheng (2) (4)
    Changyan Deng (2) (4)
    Yuanzhu Xiong (2) (4)
    Bo Zuo (2) (4)

    1. Department of Bio-engineering, College of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People’s Republic of China
    3. Bureau of Animal Husbandry of ZhangQiu, ZhangQiu, 250200, Shangdong, People’s Republic of China
    2. Key Laboratory of Swine Breeding and Genetics of Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
    4. Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, No. 1 Hongshan District, Wuhan, 430070, China
  • ISSN:1559-0291
文摘
Glycolytic potential is a hot aspect to meat quality research in recent years. Phosphofructokinase, muscle type (PFKM), is a key regulatory enzyme used to catalyze the irreversible conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. The present study was designed to investigate the association of PFKM SNP and meat quality traits in pigs. In this study, the 2,864-bp full-length cDNA sequence of the porcine PFKM gene was obtained, which contained 30?bp of 5-UTR, 2,343?bp of coding region, and 491?bp of 3-UTR. The porcine PFKM mRNA was predominantly expressed in skeletal muscle and heart. One single nucleotide polymorphism (SNP) T129C in exon 13 of PFKM gene was detected, with its allele frequencies significantly different between Chinese indigenous pig breed and Western pig breeds. The SNP was significantly associated with meat color value (m. biceps femoris), meat marbling (m. longissimus dorsi), meat marbling (m. biceps femoris), intramuscular fat (m. longissimus dorsi) (P--.01), and water moisture (m. longissimus dorsi) in the Large White × Meishan F2 population. These results laid a foundation for further investigations on the detailed physiological function of porcine PFKM gene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700