Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil
详细信息    查看全文
  • 作者:Linjing Deng ; Guangming Zeng ; Changzheng Fan&#8230
  • 关键词:Soil pollution ; Heavy metals ; Rhizosphere ; PCR ; DGGE ; Microbial community
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:99
  • 期:19
  • 页码:8259-8269
  • 全文大小:871 KB
  • 参考文献:Abaye DA, Lawlor K, Hirsch PR, Brookes PC (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur J Soil Sci 56(1):93鈥?02. doi:10.鈥?111/鈥媕.鈥?365-2389.鈥?004.鈥?0648.鈥媥 CrossRef
    Aceves MB, Grace C, Ansorena J, Dendooven L, Brookes P (1999) Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine spoil tip. Soil Biol Biochem 31(6):867鈥?76. doi:10.鈥?016/鈥婼0038-0717(98)00187-4 CrossRef
    Akcay H, Oguz A, Karapire C (2003) Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Res 37(4):813鈥?22. doi:10.鈥?016/鈥婼0043-1354(02)00392-5 CrossRef PubMed
    Anderson JPE, Domsch KH (1973) Quantification of bacterial and fungal contributions to soil respiration. Arch Microbiol 93(2):113鈥?27. doi:10.鈥?007/鈥婤F00424942
    B氓氓th E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Poll 47(3鈥?):335鈥?79. doi:10.鈥?007/鈥婤F00279331 CrossRef
    Cebron A, Arsene-Ploetze F, Bauda P, Bertin PN, Billard P, Carapito C, Devin S, Goulhen-Chollet F, Poirel J, Leyval C (2014) Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. Microb Ecol 67(1):129鈥?44. doi:10.鈥?007/鈥媠00248-013-0313-1 CrossRef PubMed
    Chen JH, He F, Zhang XH, Sun X, Zheng JF, Zheng JW (2014) Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol 87(1):164鈥?81. doi:10.鈥?111/鈥?574-6941.鈥?2212 CrossRef PubMed
    Eguchi M, Ostrowski M, Fegatella F, Bowman J, Nichols D, Nishino T, Cavicchioli R (2001) Sphingomonas alaskensis strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl Environ Microbiol 67(11):4945鈥?954. doi:10.鈥?128/鈥婣em.鈥?7.鈥?1.鈥?945-4954.鈥?001 PubMed Central CrossRef PubMed
    Frey SD, Six J, Elliott ET (2003) Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biol Biochem 35(7):1001鈥?004. doi:10.鈥?016/鈥婼0038-0717(03)00155-X CrossRef
    Frische T, Hoper H (2003) Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Chemosphere 50(3):415鈥?27. doi:10.鈥?016/鈥婼0045-6535(02)00603-3 CrossRef PubMed
    Frosteg氓rd 脜, Tunlid A, B氓氓th E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28(1):55鈥?3. doi:10.鈥?016/鈥?038-0717(95)00100-X CrossRef
    Galli U, Sch眉epp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92(2):364鈥?68. doi:10.鈥?111/鈥媕.鈥?399-3054.鈥?994.鈥媡b05349.鈥媥 CrossRef
    Ge CR, Zhang QC (2011) Microbial community structure and enzyme activities in a sequence of copper-polluted soils. Pedosphere 21(2):164鈥?69. doi:10.鈥?016/鈥婼1002-0160(11)60114-8 CrossRef
    Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Niu QY, Zhou WJ, Liang Y (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2鈥?):1517鈥?522. doi:10.鈥?016/鈥媕.鈥媕hazmat.鈥?008.鈥?9.鈥?72 CrossRef PubMed
    Gremion F, Chatzinotas A, Kaufmann K, Sigler W, Harms H (2004) Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol Ecol 48(2):273鈥?83. doi:10.鈥?016/鈥媕.鈥媐emsec.鈥?004.鈥?2.鈥?04 CrossRef PubMed
    Gupta V, Germida J (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 20(6):777鈥?86. doi:10.鈥?016/鈥?038-0717(88)90082-X CrossRef
    Insam H (2001) Developments in soil microbiology since the mid 1960s. Geoderma 100(3):389鈥?02. doi:10.鈥?016/鈥婼0016-7061(01)00029-5 CrossRef
    Jiang M, Zeng GM, Zhang C, Ma XY, Chen M, Zhang JC, Lu LH, Yu Q, Hu LP, Liu LF (2013) Assessment of heavy metal contamination in the surrounding soils and surface sediments in Xiawangang River, Qingshuitang District. PloS one 8(8) doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?071176
    Joynt J, Bischoff M, Turco R, Konopka A, Nakatsu CH (2006) Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microb Ecol 51(2):209鈥?19. doi:10.鈥?007/鈥媠00248-005-0205-0 CrossRef PubMed
    Kelly J, H盲ggblom M, Tate R III (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31(10):1455鈥?465. doi:10.鈥?016/鈥婼0038-0717(99)00059-0 CrossRef
    Khan S, Hesham AEL, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res Int 17(2):288鈥?96. doi:10.鈥?007/鈥媠11356-009-0134-4 CrossRef PubMed
    K谋z谋lkaya R, A艧k谋n T, Bayrakl谋 B, Sa臒lam M (2004) Microbiological characteristics of soils contaminated with heavy metals. Eur J Soil Sci 40(2):95鈥?02. doi:10.鈥?016/鈥媕.鈥媏jsobi.鈥?004.鈥?0.鈥?02
    Leir贸s MC, Trasar-Cepeda C, Seoane S, Gil-Sotres F (2000) Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate鈥揾umid zone (Galicia, NW Spain): general parameters. Soil Biol Biochem 32(6):733鈥?45. doi:10.鈥?016/鈥婼0038-0717(99)00195-9 CrossRef
    Liu YZ, Zhou T, Crowley D, Li LQ, Liu DW, Zheng JW, Yu XY, Pan GX, Hussain Q, Zhang XH, Zheng JF (2012) Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 7(6):e38858. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?038858 PubMed Central CrossRef PubMed
    Lobinski R, Boutron CF, Candelone JP, Hong S, Szpunar-Lobinska J, Adams FC (1994) Present century snow core record of organolead pollution in Greenland. Environ Sci Technol 28(8):1467鈥?471. doi:10.鈥?021/鈥媏s00057a014 CrossRef PubMed
    Lu LH, Zeng GM, Fan CZ, Zhang JC, Chen AW, Chen M, Jiang M, Yuan YJ, Wu HP, Lai MY, He YB (2014) Diversity of two-domain laccase-like multicopper oxidase genes in Streptomyces spp. identification of genes potentially involved in extracellular activities and lignocellulose degradation during composting of agricultural waste. Appl Environ Microbiol 80(11):3305鈥?314. doi:10.鈥?128/鈥媋em.鈥?0223-14
    Mitchell JI, Zuccaro A (2006) Sequences, the environment and fungi. Mycologist 20(2):62鈥?4. doi:10.鈥?016/鈥媕.鈥媘ycol.鈥?005.鈥?1.鈥?04 CrossRef
    Nikli艅ska M, Chodak M, Laskowski R (2006) Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl Soil Ecol 32(3):265鈥?72. doi:10.鈥?016/鈥媕.鈥媋psoil.鈥?005.鈥?8.鈥?02 CrossRef
    Ok YS, Usman ARA, Lee SS, Abd El-Azeem SAM, Choi B, Hashimoto Y, Yang JE (2011) Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere 85(4):677鈥?82. doi:10.鈥?016/鈥媕.鈥媍hemosphere.鈥?011.鈥?6.鈥?73 CrossRef PubMed
    Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157鈥?61. doi:10.鈥?263/鈥媕bb.鈥?02.鈥?57 CrossRef PubMed
    Ovre氓s L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63(9):3367鈥?373PubMed Central PubMed
    Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185(2鈥?):549鈥?74. doi:10.鈥?016/鈥媕.鈥媕hazmat.鈥?010.鈥?9.鈥?82 CrossRef PubMed
    Ronnenberg K, Wesche K (2011) Effects of fertilization and irrigation on productivity, plant nutrient contents and soil nutrients in southern Mongolia. Plant Soil 340(1鈥?):239鈥?51. doi:10.鈥?007/鈥媠11104-010-0409-z CrossRef
    Sabater S, Buchaca T, Cambra J, Catalan J, Guasch H, Ivorra N, Munoz I, Navarro E, Real M, Romani A (2003) Structure and function of benthic algal communities in an extremely acid river. J Phycol 39(3):481鈥?89. doi:10.鈥?046/鈥媕.鈥?529-8817.鈥?003.鈥?2104.鈥媥 CrossRef
    Sanderson P, Naidu R, Bolan N, Bowman M, Mclure S (2012) Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Sci Total Environ 438:452鈥?62. doi:10.鈥?016/鈥媕.鈥媠citotenv.鈥?012.鈥?8.鈥?14 CrossRef PubMed
    Serra-Wittling C, Houot S, Barriuso E (1995) Soil enzymatic response to addition of municipal solid-waste compost. Biol Fert Soils 20(4):226鈥?36. doi:10.鈥?007/鈥婤F00336082 CrossRef
    Smolders E, Buekers J, Oliver I, McLaughlin MJ (2004) Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ Toxicol Chem 23(11):2633鈥?640. doi:10.鈥?897/鈥?4-27 CrossRef PubMed
    Sol铆s-Dom铆nguez FA, Valent铆n-Vargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409(6):1009鈥?016. doi:10.鈥?016/鈥媕.鈥媠citotenv.鈥?010.鈥?1.鈥?20 PubMed Central CrossRef PubMed
    Stefanowicz AM, Nikli艅ska M, Laskowski R (2008) Metals affect soil bacterial and fungal functional diversity differently materials and methods. Environ Toxicol Chem 27(3):591鈥?98. doi:10.鈥?897/鈥?7-288.鈥? CrossRef PubMed
    Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci Total Environ 468:1014鈥?027. doi:10.鈥?016/鈥媕.鈥媠citotenv.鈥?013.鈥?9.鈥?44 CrossRef PubMed
    Tonkovic Z (1998) Energetics of enhanced biological phosphorus and nitrogen removal processes. Water Sci Technol 38(1):177鈥?84. doi:10.鈥?016/鈥婼0273-1223(98)00402-8 CrossRef
    Van de Velde K, Vallelonga P, Candelone JP, Rosman KJR, Gaspari V, Cozzi G, Barbante C, Udisti R, Cescon P, Boutron CF (2005) Pb isotope record over one century in snow from Victoria Land, Antarctica. Earth Planet Sc Lett 232(1鈥?):95鈥?08. doi:10.鈥?016/鈥媕.鈥媏psl.鈥?005.鈥?1.鈥?07 CrossRef
    Vance ED, Brokes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703鈥?07. doi:10.鈥?016/鈥?038-0717(87)90052-6 CrossRef
    Wang YP, Shi JY, Wang H, Lin Q, Chen XC, Chen YX (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safe 67(1):75鈥?1. doi:10.鈥?016/鈥媕.鈥媏coenv.鈥?006.鈥?3.鈥?07 CrossRef
    Welp G (1999) Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biol Fert Soils 30(1鈥?):132鈥?39. doi:10.鈥?007/鈥媠003740050599 CrossRef
    Wen F, Hou H, Yao N, Yan ZG, Bai LP, Li FS (2013) Effects of simulated acid rain, EDTA, or their combination, on migration and chemical fraction distribution of extraneous metals in Ferrosol. Chemosphere 90(2):349鈥?57. doi:10.鈥?016/鈥媕.鈥媍hemosphere.鈥?012.鈥?7.鈥?27 CrossRef PubMed
    Wu J, Zhang H, He PJ, Shao LM (2011) Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Res 45(4):1711鈥?719. doi:10.鈥?016/鈥媕.鈥媤atres.鈥?010.鈥?1.鈥?22 CrossRef PubMed
    Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1鈥?0. doi:10.鈥?016/鈥媕.鈥媠citotenv.鈥?012.鈥?2.鈥?23 CrossRef PubMed
    Xu P, Leng Y, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, Li NJ, Huang C, Zhang C, Li FN, Cheng M (2015) Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 99(1):435鈥?43. doi:10.鈥?007/鈥媠00253-014-5986-y CrossRef PubMed
    Zeng GM, Chen M, Zeng ZT (2013a) Risks of neonicotinoid pesticides. Science 340(6139):1403鈥?403CrossRef PubMed
    Zeng GM, Chen M, Zeng ZT (2013b) Shale gas: surface water also at risk. Nature 499(7457):154鈥?54CrossRef PubMed
    Zhang JC, Zeng GM, Chen YN, Yu M, Yu Z, Li H, Yu Y, Huang HL (2011) Effects of physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresour Technol 102(3):2950鈥?956. doi:10.鈥?016/鈥媕.鈥媌iortech.鈥?010.鈥?1.鈥?89 CrossRef PubMed
    Zheng SA, Zhang MK (2011) Effect of moisture regime on the redistribution of heavy metals in paddy soil. J Environ Sci-China 23(3):434鈥?43. doi:10.鈥?016/鈥婼1001-0742(10)60428-7 CrossRef PubMed
  • 作者单位:Linjing Deng (1) (2)
    Guangming Zeng (1) (2)
    Changzheng Fan (1) (2)
    Lunhui Lu (3)
    Xunfeng Chen (1) (2)
    Ming Chen (1) (2)
    Haipeng Wu (1) (2)
    Xiaoxiao He (1) (2)
    Yan He (1) (2)

    1. College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People鈥檚 Republic of China
    2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People鈥檚 Republic of China
    3. Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People鈥檚 Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil. Keywords Soil pollution Heavy metals Rhizosphere PCR-DGGE Microbial community

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700