Impact of series resistance on Si nanowire MOSFET performance
详细信息    查看全文
  • 作者:G. Kaushal (1)
    S. K. Manhas (1)
    S. Maheshwaram (1)
    S. Dasgupta (1)
  • 关键词:Gate ; All ; Around ; Si ; nanowire FET ; Series resistance
  • 刊名:Journal of Computational Electronics
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:12
  • 期:2
  • 页码:306-315
  • 全文大小:1202KB
  • 参考文献:1. Bangsaruntip, S., Cohen, G.M., Majumdar, A., Zhang, Y., Engelmann, S.U., Fuller, N.C.M., Gignac, L.M.: High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In: IEDM Tech. Dig., pp. 1- (2009)
    2. Kim, J., Yang, S., Lee, J., Suk, S.D., Seo, K., Park, D., Park, B.-G., Lee, J.D., Shin, H.: Investigation of mobility in twin silicon nanowire MOSFETs (TSNWFETs). In: ICSICT, pp. 50-2 (2008)
    3. Singh, N., Lim, F.Y., Fang, W.W., Rustagi, S.C., Bera, L.K., Agarwal, A., Tung, C.H.: Ultra-narrow silicon nanowire gate-all-around CMOS devices: impact of diameter, channel-orientation and low temperature on device performance. In: IEDM Tech. Dig., pp. 1- (2006)
    4. Choi, L., Hak Hong, B., Jung, Y.C., Cho, K.H., Yeo, K.H., Kim, D.-W., Jin, G.Y., Oh, K.S., Lee, W.-S., Song, S.-H., Rieh, J.S., Whang, D.M., Hwang, S.W., et al.: Extracting mobility degradation and total series resistance of cylindrical gate-all-around silicon nanowire field-effect transistors. IEEE Trans. Electron Devices Lett. 30(6), 665-67 (2009) CrossRef
    5. Baek, R.-H., Baek, C.-K., Jung, S.-W., Yeoh, Y.Y., Kim, D.-W., Lee, J.-S., Kim, D., Jeong, Y.-H.: Characteristics of the series resistance extracted from si nanowire FETs using the / Y-function technique. IEEE Trans. Nanotechnol. 9(2), 212-17 (2010) CrossRef
    6. Han, J.-W., Moon, D.-I., Choi, Y.-K.: High aspect ratio silicon nanowire for stiction immune gate-all-around MOSFETs. IEEE Trans. Electron Devices Lett. 30(8), 864-66 (2009) CrossRef
    7. Liu, M., Cai, M., Yu, B., Taur, Y.: Effect of gate overlap and source/drain doping gradient on 10-nm CMOS performance. IEEE Trans. Electron Devices 53(12), 3146-149 (2006) CrossRef
    8. Shenoy, R.S., Saraswat, C.: Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs. IEEE Trans. Nanotechnol. 2(6), 265-70 (2003) CrossRef
    9. Trivedi, V., Fossum, J.G., Chowdhury, M.M.: Nanoscale FinFETs with gate-source/drain underlap. IEEE Trans. Electron Devices 52(1), 56-2 (2005) CrossRef
    10. Sentaurus TCAD: (ver. G-2012.06) Manuals Synopsis Inc.
    11. Wettstein, A., Schenk, A., Fichtner, W.: Quantum device-simulation with the density-gradient model on unstructured grids. IEEE Trans. Electron Devices 48(2), 279-84 (2001) CrossRef
    12. Lyudis, E., Mickevicius, R., Penzin, O., Polsky, B., El Sayed, K., Wettstein, A., Fichtner, W.: Density gradient transport model for the simulations of ultrathin, ultrashort SOI under non-equilibrium conditions. In: SOI Conference, pp. 143-44 (2002)
    13. Mamaluy, D., Vasileska, D., Sabathil, M., Zibold, T., Vogl, P.: Contact block reduction method for ballistic transport and carrier densities of open nanostructures. Phys. Rev. B 71, 245321 (2005) CrossRef
    14. Khan, H.R., Mamaluy, D., Vasileska, D.: Quantum transport simulation of experimentally fabricated nano-FinFET. IEEE Trans. Electron Devices 54(4), 784-96 (2007) CrossRef
    15. Bude, J.D.: MOSFET modeling into the ballistic regime. In: SISPAD, pp. 23-6 (2000)
    16. Allen, L.H., Zhang, M.Y., Mayer, J.W., Colgan, E.G., Young, R.: Solutions to current crowding in circular vias for contact resistance measurements. J. Appl. Phys. Jul., 253-58 (1991) CrossRef
    17. Trivedi, V.P., Fossum, J.G.: Quantum-mechanical effects on the threshold voltage of undoped double-gate MOSFETs. IEEE Electron Device Lett. 26(8), 579-82 (2005) CrossRef
    18. Suk, S.D., Li, M., Yeoh, Y.Y., Yeo, K.H., Cho, K.H., Ku, I.K., Cho, H., Jang, W.J., Kim, D.-W., Park, D., Lee, W.-S.: Investigation of nanowire size dependency on TSNWFET. In: IEDM, pp. 891-94 (2007)
    19. Kim, S.-D., Park, C.-M., Woo, J.C.S.: Advanced model and analysis of series resistance for CMOS scaling into nanometer regime—Part I: theoretical derivation. IEEE Trans. Electron Devices 49(3), 457-66 (2002) CrossRef
    20. Taur, Y.: MOSFET channel length: extraction and interpretation. IEEE Trans. Electron Devices 47(1), 160-70 (2000) CrossRef
    21. Dixit, A., Kottantharayil, A., Collaert, N., Goodwin, M., Jurczak, M., De Meyer, K.: Analysis of the parasitic S/D resistance in multiple-gate FETs. IEEE Trans. Electron Devices 52(6), 1132-140 (2005) CrossRef
    22. Jiang, Y., Liow, T.Y., Singh, N., Tan, L.H., Lo, G.Q., Chan, D.S.H., Kwong, D.L.: Performance breakthrough in 8?nm gate length gate-all-around nanowire transistors using metallic nanowire contacts. In: VLSI Tech, pp. 34-5 (2008)
    23. Mudanai, S., Chindalore, G.L., Shih, W.-K., Wang, H., Ouyang, Q., Tasch, A.F., Maziar, C.M., Banerjee, S.K.: Models for electron and hole mobilities in MOS accumulation layers. IEEE Trans. Electron Devices 46, 1749-759 (1999) CrossRef
    24. Ke, W., Han, X., Xu, B., Liu, X., Wang, X., Zhang, T., Han, R., Zhang, S.: Source/drain series resistances of nanoscale ultra-thin-body SOI MOSFETs with undoped or very-low-doped channel regions. Semicond. Sci. Technol. 21, 1416-421 (2006) CrossRef
    25. Shenoy, R.S., Saraswat, C.: Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs. IEEE Trans. Nanotechnol. 2(6), 265-70 (2003) CrossRef
    26. Khan, H.R., Mamaluy, D., Vasileska, D.: Simulation of the impact of process variation on the optimized 10-nm FinFET. IEEE Trans. Electron Devices 55(8), 2134-141 (2008) CrossRef
    27. Song, Y., Xu, Q., Luo, J., Zhou, H., Niu, J., Liang, Q., Zhao, C.: Performance breakthrough in gate-all-around nanowire n- and p-type MOSFETs fabricated on bulk silicon substrate. IEEE Trans. Electron Devices 59(7), 1885-890 (2012) CrossRef
  • 作者单位:G. Kaushal (1)
    S. K. Manhas (1)
    S. Maheshwaram (1)
    S. Dasgupta (1)

    1. Microelectronics and VLSI, Dept. of Electronics and Computer Engineering, Indian Institute of Technology, Roorkee, 247667, India
  • ISSN:1572-8137
文摘
In gate all around (GAA) nanowire (NW) MOSFETs large series resistance due to narrow width extension regions is an important issue, playing a critical role in determining device and circuit performance. In this paper, we present a series resistance model and analyze its dependence on geometry/process parameters. The series resistance is modelled by dividing it into five resistance components namely spreading resistance, extension resistance, interface resistance, deep source-drain resistance and contact resistance. The model is validated using 3-D device simulations of 22?nm GAA devices with Source/Drain extension (SDE) length of 15?nm to 35?nm, diameter of 8?nm to 16?nm and oxide thickness of 10?A to 40?A for both n-FET and p-FET. It is found that the spreading resistance due to lateral doping gradient contributes significantly to the total series resistance. Further, the dependence of NW device performance on series resistance is quantitatively investigated with change of diameter, SDE length and Source/Drain (S/D) implantation dose. Results show a strong NW device performance dependence on S/D doping profile and extension length defining a design trade-off between Short Channel Effects (SCEs) and series resistance. It is seen that the increase in series resistance due to increase of extension length or decrease of implantation dose beyond a certain limit reduces the device drive current significantly with nearly constant OFF-state leakage current. Hence, optimization of extension length and S/D implant dose is an important device design issue for sub 22?nm technology nodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700