Parameter estimation of nonlinear chaotic system by improved TLBO strategy
详细信息    查看全文
文摘
Estimation of parameters of chaotic systems is a subject of substantial and well-developed research issue in nonlinear science. From the viewpoint of optimization, parameter estimation can be formulated as a multi-modal constrained optimization problem with multiple decision variables. This investigation makes a systematic examination of the feasibility of applying a newly proposed population-based optimization method labeled here as teaching–learning-based optimization (TLBO) to identify the unknown parameters for a class of chaotic system. The preliminary test demonstrates that despite its global fast coarse search capability, teaching–learning-based optimization often risks getting prematurely stuck in local optima. To enhance its fine (local) searching performance of TLBO, Nelder–Mead simplex algorithm-based local improvement is incorporated into TLBO so as to continually search for the global optima through the reflection, expansion, contraction, and shrink operators. Working with the well-established Lorenz system, we assess the effectiveness and efficiency of the proposed improved TLBO strategy. The empirical results indicate the success of the proposed hybrid approach in which the global exploration and the local exploitation are well balanced, providing the best solutions for all instances used over other state-of-the-art metaheuristics for chaotic identification in literature, including particle swarm optimization, genetic algorithm, and quantum-inspired evolutionary algorithm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700