Impact of P-glycoprotein at the blood-brain barrier on the uptake of heroin and its main metabolites: behavioral effects and consequences on the transcriptional responses and reinforcing properties
详细信息    查看全文
  • 作者:Marianne Seleman (1) (2) (3)
    Hélène Chapy (1) (2) (3)
    Salvatore Cisternino (1) (2) (3)
    Cindie Courtin (1) (2) (3)
    Maria Smirnova (1) (2) (3)
    Jo?l Schlatter (4)
    Fouad Chiadmi (4)
    Jean-Michel Scherrmann (1) (2) (3)
    Florence Noble (1) (2) (3)
    Cynthia Marie-Claire (1) (2) (3)
  • 关键词:Morphine ; Heroin ; P ; glycoprotein ; Gene expression ; Nociception ; Locomotor activity
  • 刊名:Psychopharmacology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:231
  • 期:16
  • 页码:3139-3149
  • 全文大小:612 KB
  • 参考文献:1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13-5 new window">CrossRef
    2. Abreu ME, Bigelow GE, Fleisher L, Walsh SL (2001) Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans. Psychopharmacology (Berlin) 154:76-4 new window">CrossRef
    3. Achira M, Suzuki H, Ito K, Sugiyama Y (1999) Comparative studies to determine the selective inhibitors for P-glycoprotein and cytochrome P4503A4. AAPS Pharm Sci 1:E18 new window">CrossRef
    4. Andersen JM, Ripel A, Boix F, Normann PT, Morland J (2009) Increased locomotor activity induced by heroin in mice: pharmacokinetic demonstration of heroin acting as a prodrug for the mediator 6-monoacetylmorphine in vivo. J Pharmacol Exp Ther 331:153-61 new window">CrossRef
    5. Bardo MT, Rowlett JK, Harris MJ (1995) Conditioned place preference using opiate and stimulant drugs: a meta-analysis. Neurosci Biobehav Rev 19:39-1 new window">CrossRef
    6. Barrio G, De La Fuente L, Lew C, Royuela L, Bravo MJ, Torrens M (2001) Differences in severity of heroin dependence by route of administration: the importance of length of heroin use. Drug Alcohol Depend 63:169-77 new window">CrossRef
    7. Belkai E, Scherrmann JM, Noble F, Marie-Claire C (2009) Modulation of MDMA-induced behavioral and transcriptional effects by the delta opioid antagonist naltrindole in mice. Addict Biol 14:245-52 new window">CrossRef
    8. Boix F, Andersen JM, Morland J (2013) Pharmacokinetic modeling of subcutaneous heroin and its metabolites in blood and brain of mice. Addict Biol 18:1- new window">CrossRef
    9. Cattelotte J, Andre P, Ouellet M, Bourasset F, Scherrmann JM, Cisternino S (2008) In situ mouse carotid perfusion model: glucose and cholesterol transport in the eye and brain. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 28:1449-459 new window">CrossRef
    10. Chardin P (2006) Function and regulation of Rnd proteins. Nat Rev Mol Cell Biol 7:54-2 new window">CrossRef
    11. Cisternino S, Rousselle C, Dagenais C, Scherrmann JM (2001) Screening of multidrug-resistance sensitive drugs by in situ brain perfusion in P-glycoprotein-deficient mice. Pharm Res 18:183-90 new window">CrossRef
    12. Cisternino S, Rousselle C, Debray M, Scherrmann JM (2004) In situ transport of vinblastine and selected P-glycoprotein substrates: implications for drug-drug interactions at the mouse blood-brain barrier. Pharm Res 21:1382-389 new window">CrossRef
    13. Comer SD, Collins ED, MacArthur RB, Fischman MW (1999) Comparison of intravenous and intranasal heroin self-administration by morphine-maintained humans. Psychopharmacology (Berlin) 143:327-38 new window">CrossRef
    14. Dagenais C, Rousselle C, Pollack GM, Scherrmann JM (2000) Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 20:381-86 new window">CrossRef
    15. Dagenais C, Zong J, Ducharme J, Pollack GM (2001) Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm Res 18:957-63 new window">CrossRef
    16. Dagenais C, Graff CL, Pollack GM (2004) Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol 67:269-76 new window">CrossRef
    17. Decleves X, Jacob A, Yousif S, Shawahna R, Potin S, Scherrmann JM (2011) Interplay of drug metabolizing CYP450 enzymes and ABC transporters in the blood-brain barrier. Curr Drug Metab 12:732-41 new window">CrossRef
    18. Di Ciano P, Robbins TW, Everitt BJ (2008) Differential effects of nucleus accumbens core, shell, or dorsal striatal inactivations on the persistence, reacquisition, or reinstatement of responding for a drug-paired conditioned reinforcer. Neuropsychopharmacology 33:1413-425 new window">CrossRef
    19. Eddy NB, Leimbach D (1953) Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Ther 107:385-93
    20. Galtress T, Kirkpatrick K (2010) The role of the nucleus accumbens core in impulsive choice, timing, and reward processing. Behav Neurosci 124:26-3 new window">CrossRef
    21. Hand TH, Stinus L, Le Moal M (1989) Differential mechanisms in the acquisition and expression of heroin-induced place preference. Psychopharmacology (Berlin) 98:61-7 new window">CrossRef
    22. Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695-03 new window">CrossRef
    23. King M, Su W, Chang A, Zuckerman A, Pasternak GW (2001) Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 4:268-74 new window">CrossRef
    24. Kitanaka N, Sora I, Kinsey S, Zeng Z, Uhl GR (1998) No heroin or morphine 6beta-glucuronide analgesia in mu-opioid receptor knockout mice. Eur J Pharmacol 355:R1–R3 new window">CrossRef
    25. Korostynski M, Kaminska-Chowaniec D, Piechota M, Przewlocki R (2006) Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes. BMC Genomics 7:146 new window">CrossRef
    26. Kusunoki N, Takara K, Tanigawara Y, Yamauchi A, Ueda K, Komada F, Ku Y, Kuroda Y, Saitoh Y, Okumura K (1998) Inhibitory effects of a cyclosporin derivative, SDZ PSC 833, on transport of doxorubicin and vinblastine via human P-glycoprotein. Jpn J Cancer Res: Gann 89:1220-228 new window">CrossRef
    27. Letrent SP, Pollack GM, Brouwer KR, Brouwer KL (1999) Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos Biol Fate Chem 27:827-34
    28. Lv XF, Xu Y, Han JS, Cui CL (2011) Expression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference. Behav Brain Res 223:182-91 new window">CrossRef
    29. Marie-Claire C, Salzmann J, David A, Courtin C, Canestrelli C, Noble F (2007) Rnd family genes are differentially regulated by 3,4-methylenedioxymethamphetamine and cocaine acute treatment in mice brain. Brain Res 1134:12-7 new window">CrossRef
    30. Marsch LA, Bickel WK, Badger GJ, Rathmell JP, Swedberg MD, Jonzon B, Norsten-Hoog C (2001) Effects of infusion rate of intravenously administered morphine on physiological, psychomotor, and self-reported measures in humans. J Pharmacol Exp Ther 299:1056-5
    31. Martin WR, Fraser HF (1961) A comparative study of physiological and subjective effects of heroin and morphine administered intravenously in postaddicts. J Pharmacol Exp Ther 133:388-99
    32. Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10:201-17 new window">CrossRef
    33. Oldendorf WH (1992) Some relationships between addiction and drug delivery to the brain. NIDA Res Monogr 120:13-5
    34. Oldendorf WH, Hyman S, Braun L, Oldendorf SZ (1972) blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178:984-86 new window">CrossRef
    35. Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26:3203-213 new window">CrossRef
    36. Piechota M, Korostynski M, Solecki W, Gieryk A, Slezak M, Bilecki W, Ziolkowska B, Kostrzewa E, Cymerman I, Swiech L, Jaworski J, Przewlocki R (2010) The dissection of transcriptional modules regulated by various drugs of abuse in the mouse striatum. Genome Biol 11:R48 new window">CrossRef
    37. Roberts DJ, Goralski KB (2008) A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Exp Opin Drug Metab Toxicol 4:1245-264 new window">CrossRef
    38. Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95(Suppl 2):S91–S117
    39. Robinson TE, Kolb B (1999) Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse 33:160-62 new window">CrossRef
    40. Samaha A-N, Mallet N, Ferguson SM, Gonon F, Robinson TE (2004) The rate of cocaine administration alters gene regulation and behavioral plasticity: implications for addiction. J Neurosci 24:6362-370 new window">CrossRef
    41. Samaha AN, Yau WY, Yang P, Robinson TE (2005) Rapid delivery of nicotine promotes behavioral sensitization and alters its neurobiological impact. Biol Psychiatry 57:351-60 new window">CrossRef
    42. Scherrmann JM (2005) Expression and function of multidrug resistance transporters at the blood-brain barriers. Exp Opin Drug Metab Toxicol 1:233-46 new window">CrossRef
    43. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P (1995) Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Investig 96:1698-705 new window">CrossRef
    44. Selley DE, Cao CC, Sexton T, Schwegel JA, Martin TJ, Childers SR (2001) mu Opioid receptor-mediated G-protein activation by heroin metabolites: evidence for greater efficacy of 6-monoacetylmorphine compared with morphine. Biochem Pharmacol 62:447-55 new window">CrossRef
    45. Smith GM, Beecher HK (1962) Subjective effects of heroin and morphine in normal subjects. J Pharmacol Exp Ther 136:47-2
    46. Smolka M, Schmidt LG (1999) The influence of heroin dose and route of administration on the severity of the opiate withdrawal syndrome. Addiction 94:1191-198 new window">CrossRef
    47. Tallarida RJ, Murray RB (1986) Manual of pharmacological calculation, 2nd edn. Springer, New York new window">CrossRef
    48. Thompson SJ, Koszdin K, Bernards CM (2000) Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein. Anesthesiology 92:1392-399 new window">CrossRef
    49. Tolliver BK, Sganga MW, Sharp FR (2000) Suppression of c-fos induction in the nucleus accumbens prevents acquisition but not expression of morphine-conditioned place preference. Eur J Neurosci 12:3399-406 new window">CrossRef
    50. Tournier N, Decleves X, Saubamea B, Scherrmann JM, Cisternino S (2011) Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology. Curr Pharm Des 17:2829-842 new window">CrossRef
    51. Valjent E, Pages C, Herve D, Girault J-A, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826-836 new window">CrossRef
    52. Wang QL, Liu ZM (2012) Characteristics of psychopathology and the relationship between routes of drug administration and psychiatric symptoms in heroin addicts. Subst Abus Off Publ Assoc Med Educ Res Subst Abus 33:130-37
    53. Watanabe T, Tsuge H, Oh-Hara T, Naito M, Tsuruo T (1995) Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol 34:235-41 new window">CrossRef
    54. Watson B, Meng F, Akil H (1996) A chimeric analysis of the opioid receptor domains critical for the binding selectivity of mu opioid ligands. Neurobiol Dis 3:87-6 new window">CrossRef
    55. Wickens JR, Budd CS, Hyland BI, Arbuthnott GW (2007) Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Ann N Y Acad Sci 1104:192-12 new window">CrossRef
    56. Xie R, Hammarlund-Udenaes M, de Boer AG, de Lange EC (1999) The role of P-glycoprotein in blood-brain barrier transport of morphine: transcortical microdialysis studies in mdr1a (?? and mdr1a (+/+) mice. Br J Pharmacol 128:563-68 new window">CrossRef
    57. Zong J, Pollack GM (2000) Morphine antinociception is enhanced in mdr1a gene-deficient mice. Pharm Res 17:749-53 new window">CrossRef
  • 作者单位:Marianne Seleman (1) (2) (3)
    Hélène Chapy (1) (2) (3)
    Salvatore Cisternino (1) (2) (3)
    Cindie Courtin (1) (2) (3)
    Maria Smirnova (1) (2) (3)
    Jo?l Schlatter (4)
    Fouad Chiadmi (4)
    Jean-Michel Scherrmann (1) (2) (3)
    Florence Noble (1) (2) (3)
    Cynthia Marie-Claire (1) (2) (3)

    1. Laboratoire de Neuropsychopharmacologie des Addictions Centre National de la Recherche Scientifique Unité Mixte de Recherche 8206, 4 avenue de l’Observatoire, 75006, Paris, France
    2. Institut National de la Santé et de la Recherche Médicale, U 705, Paris, France
    3. Sorbonne Paris Cité, Faculté de Pharmacie, Université Paris Descartes, 4 avenue de l’Observatoire, 75006, Paris, France
    4. H?pital Jean Verdier—AP-HP—Laboratoire de Toxicologie, 93140, Bondy, Paris, France
  • ISSN:1432-2072
文摘
Rationale Transport across the BBB is a determinant of the rate and extent of drug distribution in the brain. Heroin exerts its effects through its principal metabolites 6-monoacetyl-morphine (6-MAM) and morphine. Morphine is a known substrate of P-glycoprotein (P-gp) at the blood-brain-barrier (BBB) however, little is known about the interaction of heroin and 6-MAM with P-gp. Objective The objective of this paper is to study the role of the P-gp-mediated efflux at the BBB in the behavioral and molecular effects of heroin and morphine. Methods The transport rates of heroin and its main metabolites, at the BBB, were measured in mice by in situ brain perfusion. We then examined the effect of inhibition of?P-gp on the acute nociception, locomotor activity, and gene expression modulations induced by heroin and morphine. The effect of P-gp inhibition during the acquisition of morphine-induced place preference was also studied. Results Inhibition of P-gp significantly increased the uptake of morphine but not that of heroin nor 6-MAM. Inhibition of P-gp significantly increased morphine-induced acute analgesia and locomotor activity but did not affect the behavioral effects of heroin; in addition, acute transcriptional responses to morphine were selectively modulated in the nucleus accumbens. Increasing morphine uptake by the brain significantly increased its reinforcing properties in the place preference paradigm. Conclusions The present study demonstrated that acute inhibition of P-gp not only modulates morphine-induced behavioral effects but also its transcriptional effects and reinforcing properties. This suggests that, in the case of morphine, transport across the BBB is critical for the development of dependence.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700