Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography
详细信息    查看全文
  • 作者:Jilu Feng ; Zhili Sun ; Zenghui Jiang ; Li Yang
  • 关键词:Milling chatter ; Thin ; walled workpiece ; Milling force signals ; Surface topography ; Fast Fourier transform ; Wavelet transform
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:82
  • 期:9-12
  • 页码:1909-1920
  • 全文大小:2,932 KB
  • 参考文献:1.Huang PL, Li JF, Sun J, Zhou J (2014) Study on performance in dry milling aeronautical titanium alloy thin-wall components with two types of tools. J Clean Prod 67:258–264. doi:10.​1016/​j.​jclepro.​2013.​12.​006 CrossRef
    2.Zhu LD, Zhu CX, Pei JY, Li XB, Wang W (2014) Prediction of three-dimensional milling forces based on finite element. Adv Mater Sci Eng 7. doi: 10.​1155/​2014/​918906
    3.Li X, Zhao W, Li L, He N, Chi S (2015) Modeling and application of process damping in milling of thin-walled workpiece made of titanium alloy. Shock Vib 2015:1–12. doi:10.​1155/​2015/​431476
    4.Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Technol 70(5-8):919–928. doi:10.​1007/​s00170-013-5326-x CrossRef
    5.Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 61:27–47. doi:10.​1016/​j.​ijmachtools.​2012.​05.​007 CrossRef
    6.Duncan GS, Tummond MF, Schmitz TL (2005) An investigation of the dynamic absorber effect in high-speed machining. Int J Mach Tools Manuf 45(4-5):497–507. doi:10.​1016/​j.​ijmachtools.​2004.​09.​005 CrossRef
    7.López De Lacalle LN, Pérez J, Llorente JI, Sánchez JA (2000) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100(1):1–11. doi:10.​1016/​S0924-0136(99)00372-6 CrossRef
    8.Tobias SA (1965) Machine–tool vibration. Blackie, London
    9.Tlusty J (1986) Dynamics of high speed milling. J Eng Ind Trans ASME 108(59–67). doi: 10.​1115/​1.​3187052
    10.Tlusty J, Polacek M (1963) The stability of machine tools against self-excited vibrations in machining. Proceedings of the international research in production engineering, ASME, Pittsburgh, PA, pp. 465–474
    11.Bravo U, Altuzarra O, López De Lacalle LN, Sánchez JA, Campa FJ (2005) Stability limits of milling considering the flexibility of the workpiece and the machine. Int J Mach Tools Manuf 45(15):1669–1680. doi:10.​1016/​j.​ijmachtools.​2005.​03.​004 CrossRef
    12.Campa FJ, Lopez De Lacalle LN, Celaya A (2011) Chatter avoidance in the milling of thin floors with bull-nose end mills: model and stability diagrams. Int J Mach Tools Manuf 51(1):43–53. doi:10.​1016/​j.​ijmachtools.​2010.​09.​008 CrossRef
    13.Heisel U, Feinauer A (1999) Dynamic influence on workpiece quality in high speed milling. CIRP Ann 48:321–324CrossRef
    14.Tang AJ, Liu ZQ (2009) Three-dimensional stability lobe and maximum material removal rate in end milling of thin-walled plate. Int J Adv Manuf Technol 43(1-2):33–39. doi:10.​1007/​s00170-008-1695-y CrossRef
    15.Ítalo Sette Antonialli A, Eduardo Diniz A, Pederiva R (2010) Vibration analysis of cutting force in titanium alloy milling. Int J Mach Tools Manuf 50(1):65–74. doi:10.​1016/​j.​ijmachtools.​2009.​09.​006 CrossRef
    16.Thevenot V, Arnaud L, Dessein G, Cazenave-Larroche G (2006) Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling. Int J Adv Manuf Technol 27(7-8):638–644. doi:10.​1007/​s00170-004-2241-1 CrossRef
    17.Huang P, Li J, Sun J, Zhou J (2013) Vibration analysis in milling titanium alloy based on signal processing of cutting force. Int J Adv Manuf Technol 64(5-8):613–621. doi:10.​1007/​s00170-012-4039-x CrossRef
    18.Cao H, Chen X, Zi Y, Ding F, Chen H, Tan J, He Z (2008) End milling tool breakage detection using lifting scheme and Mahalanobis distance. Int J Mach Tools Manuf 48(2):141–151. doi:10.​1016/​j.​ijmachtools.​2007.​09.​001 CrossRef
    19.Al-Zaharnah IT (2006) Suppressing vibrations of machining processes in both feed and radial directions using an optimal control strategy: the case of interrupted cutting. J Mater Process Technol 172(2):305–310. doi:10.​1016/​j.​jmatprotec.​2005.​10.​008 CrossRef
    20.Huang P, Li J, Sun J, Ge M (2012) Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill. Int J Adv Manuf Technol 58(1-4):153–160. doi:10.​1007/​s00170-011-3380-9 CrossRef
    21.Zhu K, Wong YS, Hong GS (2009) Wavelet analysis of sensor signals for tool condition monitoring: a review and some new results. Int J Mach Tools Manuf 49(7-8):537–553. doi:10.​1016/​j.​ijmachtools.​2009.​02.​003 CrossRef
    22.Yao Z, Mei D, Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. J Mater Process Technol 210(5):713–719. doi:10.​1016/​j.​jmatprotec.​2009.​11.​007 CrossRef
    23.Montgomery D, Altintas Y (1991) Mechanism of cutting force and surface generation in dynamic milling. J Manuf Sci Eng 113(2):160–168
    24.Jiang H, Long X, Meng G (2008) Study of the correlation between surface generation and cutting vibrations in peripheral milling. J Mater Process Technol 208(1-3):229–238. doi:10.​1016/​j.​jmatprotec.​2007.​12.​127 CrossRef
    25.Arizmendi M, Campa FJ, Fernández J, López De Lacalle LN, Gil A, Bilbao E, Veiga F, Lamikiz A (2009) Model for surface topography prediction in peripheral milling considering tool vibration. CIRP Ann Manuf Technol 58(1):93–96. doi:10.​1016/​j.​cirp.​2009.​03.​084 CrossRef
    26.Wang M, Gao L, Zheng Y (2014) Prediction of regenerative chatter in the high-speed vertical milling of thin-walled workpiece made of titanium alloy. Int J Adv Manuf Technol 72(5-8):707–716. doi:10.​1007/​s00170-014-5641-x CrossRef
    27.Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal 11(7):674–693. doi:10.​1109/​34.​192463 CrossRef
    28.Wickerhauser MV (1991) INRIA lectures on wavelet packet algorithms. INRIA, Roquencourt, France, Minicourse lecture notes
    29.Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. Trans ASME J Eng 118(2):216–224
  • 作者单位:Jilu Feng (1)
    Zhili Sun (1)
    Zenghui Jiang (2)
    Li Yang (3)

    1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
    2. School of Mechanical Engineering, Shenyang Ligong University, Shenyang, 110159, China
    3. School of Equipment Engineering, Shenyang Ligong University, Shenyang, 110159, China
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering
    Production and Logistics
    Mechanical Engineering
    Computer-Aided Engineering and Design
  • 出版者:Springer London
  • ISSN:1433-3015
文摘
In vertical milling process of Ti-6Al-4V titanium alloy thin-walled workpieces, chatter as a thorny problem occurs easily, which can lead to the instability of the machining process, tool wear, and poor surface finish. It has become a focus issue to identify and avoid chatter in machining process. In this paper, the milling force signals in the direction perpendicular to the machined surface were analyzed by fast Fourier transform and wavelet transform for detecting chatter. The combination of the surface topography and the prediction theory of regenerative chatter were put forward to further verify chatter. The results show that fast Fourier transform in some cases, wavelet transform, and the combination of surface topography and the prediction theory of regenerative chatter can obtain better results for the detection and verification of chatter, and the stable cutting zone was obtained using a stability lobe diagram, which can assist in the selection of reasonable cutting parameters to avoid chatter. Keywords Milling chatter Thin-walled workpiece Milling force signals Surface topography Fast Fourier transform Wavelet transform

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700