Evaluation of cloud properties in the NCEP CFSv2 model and its linkage with Indian summer monsoon
详细信息    查看全文
  • 作者:Anupam Hazra ; Hemantkumar S. Chaudhari…
  • 刊名:Theoretical and Applied Climatology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:124
  • 期:1-2
  • 页码:31-41
  • 全文大小:1,548 KB
  • 参考文献:Abhilash S, Sahai AK, Pattnaik S, Goswami BN, Kumar A (2014) Extended range prediction of active
    eak spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP Climate Forecast System. Int J Clim 34:98–113. doi:10.​1002/​joc.​3668 CrossRef
    Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydro Meteorol 4:1147–1167
    Arakawa A (1975) Modelling clouds and cloud processes for use in climate model. The Physical Basis of Climate and Climate Modelling, GARP Publication Series, No. 16, WMO, 183–197
    Arakawa A, Schubert WH (1974) Interaction of a cumulus ensemble with the large-scale environment, Part 1. J Atmos Sci 31:674–701CrossRef
    Baker MB (1997) Cloud microphysics and climate. Science 276:1072–1078CrossRef
    Chattopadhyay R, Goswami BN, Sahai AK, Fraedrich K (2009) Role of stratiform rainfall in modifying the northward propagation of monsoon intraseasonal oscillation. J Geophys Res 114:D19114, doi:10.​1029/​2009JD011869
    Chaudhari HS, Shinde MA, Oh JH (2010) Understanding of anomalous Indian Summer Monsoon rainfall of 2002 and 1994. Quat Int 213:20–32CrossRef
    Chaudhari HS, Pokhrel S, Mohanty S, Saha SK (2013) Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model. Theor Appl Clim :1–19. doi:10.​1007/​s00704-013-0854-8
    Chaudhari HS, Pokhrel S, Saha SK, Dhakate A, Hazra A (2014) Improved depiction of Indian Summer Monsoon in latest high resolution NCEP Climate Forecast System Reanalysis. Int J Climatol (in press)
    Choudhury AD, Krishnan R (2011) Dynamical response of the south Asian monsoon trough to latent heating from stratiform and convective precipitation. J Atmos Sci 68:1347–1363CrossRef
    Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spec Radiat Trans 91:233–244CrossRef
    Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 1089(D22):8851. doi:10.​1029/​2002JD003296 CrossRef
    Goswami BN, Xavier PK (2005) Dynamics of internal interannual variability of the Indian summer monsoon in a GCM. J Geophys Res 110:D24104. doi:10.​1029/​2005JD006042
    Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group Tech Rep 5:337
    Han J, Pan H-L (2011) Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weath Forecast 26:520–533. doi:10.​1175/​WAF-D-10-05038.​1 CrossRef
    Hazra A, Goswami BN, Chen J-P (2013a) Role of interactions between aerosol radiative effect, dynamics and cloud microphysics on transitions of monsoon intraseasonal oscillations. J Atmos Sci 70:2073–2087. doi:10.​1175/​JAS-D-12-0179.​1 CrossRef
    Hazra A, Taraphdar S, Halder M, Pokhrel S, Chaudhari HS, Salunke K, Mukhopadhyay P, Rao SA (2013b) Indian summer monsoon drought 2009: role of aerosol and cloud microphysics. Atmos Sci Lett 14:181–186. doi:10.​1002/​asl.​437 CrossRef
    Hazra A, Chaudhari HS, Pokhrel S (2014) Improvement in convective and stratiform rain fractions over the Indian region with introduction of new ice nucleation parameterization in ECHAM5. Theor Appl Clim. doi:10.​1007/​s00704-014-1163-6
    Hu Z-Z, Huang B, Pegion K (2008) Low cloud errors over the southeastern Atlantic in the NCEP CFS and their association with lower-tropospheric stability and air-sea interaction. J Geophys Res 113:D12114. doi:10.​1029/​2007JD009514
    Hu et al (2009) CALIPSO/CALIOP cloud phase discrimination algorithms. J Atmos Oceanic Technol 26(11):2293–2309, doi:10.​1175/​2009JTECHA1281.​1
    Kanamitsu M, Ebisuzaki W, Woolen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRef
    Kang I-S, Yang YM, Tao W-K (2014) GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Clim Dyn. doi:10.​1007/​s00382-014-2376-1
    Kim YJ, Arakawa A (1995) Improvement of orographic gravity wave parameterization using a meso-scale gravity wave model. J Atmos Sci 52:1875–1902CrossRef
    Kim D, Kang I-S (2012) A bulk mass flux convection scheme for climate model: description and moisture sensitivity. Clim Dyn 38:411–429CrossRef
    Krishnamurti TN, Bedi HS, Subramaniam M (1989) The summer monsoon of 1987. J Climate 2:321–340CrossRef
    Kumar S, Hazra A, Goswami BN (2014) Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar coast and the western ghats. Clim Dyn. doi:10.​1007/​s00382-013-909-3
    Lin B, Minnis P, Fan T-F, Hu Y, Sun W (2010) Radiation characteristics of low and high clouds in different oceanic regions observed by CERES and MODIS. Int J Remote Sens 31:6473–6492. doi:10.​1080/​0143116090354800​5 CrossRef
    Lott F, Miller MJ (1997) A new subgrid-scale orographic drag parametrization: its formulation and testing. Q J Roy Meteorol Soc 123:101–127CrossRef
    Mahakur M, Prabhu A, Sharma AK, Rao VR, Senroy S, Singh R, Goswami BN (2013) High-resolution outgoing longwave radiation dataset from Kalpana-1 satellite during 2004–2012. Curr Sci 105:1124–1133
    Moorthi S, Pan HL, Caplan P (2001) NCEP operational MRF/AVN global analysis/forecast system. NWS Tech Proc Bull 484:14. Available at http://​www.​nws.​noaa.​gov/​om/​tpb/​484.​htm
    Moorthi S, Sun R, Xia H, Mechoso CR (2010) Low-cloud simulation in the Southeast Pacific in the NCEP GFS: role of vertical mixing and shallow convection. NCEP Office Note 463, pp 28. Available online at http://​www.​emc.​ncep.​noaa.​gov/​officenotes/​FullTOC.​html#2000
    Mukhopadhyay P, Taraphdar S, Goswami BN (2011) Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. J Geophys Res 116:D05116. 1–21
    Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012) Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39:2585–2608CrossRef
    Rajeevan M, Rohini P, Niranjan Kumar K, Srinivasan J, Unnikrishnan CK (2013) A study of vertical cloud structure of the Indian summer monsoon using CloudSat data. Clim Dyn 40:637–650CrossRef
    Ramanathan V (1987) The role of earth radiation budget studies in climate and general circulation research. J Geophys Res 92(D4):4075–4095. doi:10.​1029/​JD092iD04p04075 CrossRef
    Randall DA, Coakley JA, Fairall CW, Kropfli RA, Lenschow DH (1984) Outlook for research on subtropical marine stratiform clouds. Bull Am Meteorol Soc 65:1290–1301CrossRef
    Rienecker MM et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648. doi:10.​1175/​JCLI-D-11-00015.​1
    Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057CrossRef
    Saha SK, Pokhrel S, Chaudhari HS (2013) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun. Clim Dyn 41:1801–1815CrossRef
    Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahapatra S, Rao SA (2014a) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Clim 34:1628–1641CrossRef
    Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014b) The NCEP climate forecast system version 2. J Climate 27:2185–2208CrossRef
    Sikka D, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108:1840–1853CrossRef
    Sperber KR, Brankovic C, Deque M, Frederiksen CS, Graham R, Kitoh A, Kobayashi C, Palmer T, Puri K, Tennant W, Volodin E (2001) Dynamical seasonal predictability of the Asian summer monsoon. Mon Weather Rev 129:2226–2248CrossRef
    Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O'Connor EJ, Rossow WB, Durden SL, Miller SD, Austin RT, Benedetti A, Mitrescu C (2002) The Cloudsat mission and A-train: a new dimension of space based observations of clouds and precipitation. Bull Am Meteorol Soc 83:1771–1790CrossRef
    Stubenrauch C, Duvel J-P, Kandel RS (1993) Determination of longwave anisotropic emission factors from combined broad- and narrowband radiance measurements. J Appl Meteorol 32:848–856CrossRef
    Sun R, Moorthi S, Mechoso CR (2010) Simulation of low clouds in the Southeast Pacific by the NCEP GFS: sensitivity to vertical mixing. Atmos Chem Phys 10:12261–12272CrossRef
    Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud studies with mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1757CrossRef
    Tao W-K, Simpson J, Lang S, McCumber M, Adler R, Penc R (1990) An algorithm to estimate the heat budget from vertical hydrometeor profile. J Appl Meteorol 29:1232–1244CrossRef
    Thorsen TJ, Fu Q, Comstock J (2011) Comparison of the CALIPSO satellite and ground‐based observations of cirrus clouds at the ARM TWP sites. J Geophys Res 116:D21203. doi:10.​1029/​2011JD015970
    Waliser DE, Li J-LF, Woods CP, Austin RT, Bacmeister J, Chern J, Del Genio A, Jiang JH, Kuang Z, Meng H, Minnis P, Platnick S, Rossow WB, Stephens GL, Sun-Mack S, Tao W-K, Tompkins AM, Vane DG, Walker C, Wu D (2009) Cloud ice: a climate model challenge with signs and expectations of progress. J Geophys Res 114(10):
    Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability and the prospectus for prediction. J Geophys Res 103:14451–14510CrossRef
    Winker DM, Vaughan MA, Omar A, Hu Y, Powell KA, Liu Z, Hunt WH, Young SH (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Oceanic Tech 26:2310–2323. doi:10.​1175/​2009JTECHA1281.​1 CrossRef
    Wu X, Moorthi S, Okomoto K, Pan HL (2005) Sea ice impacts on GFS forecasts at high latitudes. In: Eighth conference on polar meteorology and oceanography. American Meteorological Society, San Diego, CA, 7.4
    Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Q J Roy Meteorol Soc 133:749–764CrossRef
    Xu KM, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102CrossRef
    Yoo H, Li Z (2012) Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products. Clim Dyn. doi:10.​1007/​s00382-012-1430-0
    Zhang MH, Lin WY, Klein SA et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110:D15S02. doi:10.​1029/​2004JD005021
    Zhao QY, Carr FH (1997) A prognostic cloud scheme for operational NWP models. Mon Weather Rev 125:1931–1953CrossRef
    Zhou Y-P, Tao W-K, Hou A-Y, Olson WS, Shie C-L, Lau KM, Chou MD, Lin X, Grecu M (2007) Use of high-resolution satellite observations to evaluate cloud and precipitation statistics from cloud-resolving model simulations. Part I: South China Sea monsoon experiment. J Atmos Sci 64:4309–4329CrossRef
  • 作者单位:Anupam Hazra (1)
    Hemantkumar S. Chaudhari (1)
    Ashish Dhakate (1)

    1. Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Climate Change
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Wien
  • ISSN:1434-4483
文摘
Cloud fraction, which varies greatly among general circulation models, plays a crucial role in simulation of Indian summer monsoon rainfall (ISMR). The NCEP Climate Forecast System version 2 (CFSv2) model is evaluated in terms of its simulation of cloud fraction, cloud condensate, outgoing longwave radiation (OLR), and tropospheric temperature (TT). Biases in these simulated quantities are computed using observations from CALIPSO and reanalysis data from MERRA. It is shown that CFSv2 underestimates (overestimates) high- (mid-) level clouds. The cloud condensate is also examined to see its impact on different types of clouds. The upper-level cloud condensate is underestimated, particularly during the summer monsoon period, which leads to a cold TT and a dry precipitation bias. The unrealistically weak TT gradient between ocean and land is responsible for the underestimation of ISMR. The model-simulated OLR is overestimated which depicts the weaker convective activity. A large underestimate of precipitable water is also seen along the cross-equatorial flow and particularly over the Indian land region collocated with a dry precipitation bias. The linkages among cloud microphysical, thermodynamical, and dynamical processes are identified here. Thus, this study highlights the importance of cloud properties, a major cause of uncertainty in CFSv2, and also proposes a pathway for improvements in its simulation of the Indian summer monsoon.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700