SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods
详细信息    查看全文
  • 作者:Suwussa Bamrungsap ; Alongkot Treetong ; Chayachon Apiwat
  • 关键词:Surface enhanced Raman scattering ; Human potein tyrosine kinase ; PTK ; 7 ; Mapping ; Imaging
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:183
  • 期:1
  • 页码:249-256
  • 全文大小:1,267 KB
  • 参考文献:1.Brody EN, Gold L (2000) Aptamers as therapeutic and diagnostic agents. Rev Mol Biotechnol 74:5–13CrossRef
    2.Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRef
    3.Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRef
    4.Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768CrossRef
    5.Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54CrossRef
    6.Kneipp J, Kneipp H, Kneipp K (2008) SERS-a single-molecule and nanoscale tool for bioanalysis. Chem Soc Rev 37:1052–1060CrossRef
    7.Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920CrossRef
    8.Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) SERS as a foundation for nanoscale, optically detected biological labels. Adv Mater 19:3100–3108CrossRef
    9.Ma W, Sun M, Xu L, Wang L, Kuang H, Xu C (2013) A SERS active gold nanostar dimer for mercury ion detection. Chem Commun 49:4989–4991CrossRef
    10.Luo Z, Chen K, Lu D, Han H, Zou M (2011) Synthesis of p-amiothiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications. Microchim Acta 173:149–156CrossRef
    11.Wang Y, Lee K, Irudayaraj J (2010) SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun 46:613–615CrossRef
    12.Wang Z, Zong S, Yang J, Li J, Cui Y (2011) Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 26:2883–2889CrossRef
    13.Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRef
    14.Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRef
    15.Huang X, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer cells assembled and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: a potential cancer diagnostic marker. Nano Lett 7:1591–1597CrossRef
    16.Park H, Lee S, Chen L, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J (2009) SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 11:7444–7449CrossRef
    17.Kim K, Kim KL, Lee SJ (2005) Surface enrichment of Ag atoms in Au/Ag alloy nanoparticles revealed by surface enhanced raman scattering spectroscopy. Chem Phys Lett 403:77–82CrossRef
    18.Yang Y, Shi J, Kawamura G, Nogami M (2008) Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced raman scattering. Scr Mater 585:862–865CrossRef
    19.Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) Synthesis of normal and inverted gold-silver core-shell architectures in β-cyclodextrin and their applications in SERS. J Phys Chem C 111:10806–10813CrossRef
    20.Huang YF, Lin YW, Chang HT (2006) Growth of various Au–Ag nanocomposites from gold seeds in amino acid solutions. Nanotechnology 17:4885–4894CrossRef
    21.Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80:567–572CrossRef
    22.Kumar GVP (2012) Plasmonic nano-architectures for surface enhanced raman scattering: a review. J Nanophotonics 6(1–20):64503CrossRef
    23.Nima ZA, Mahmood M, Xu Y, Mustafa T, Watanabe F, Nedosekin DA, Juratli MA, Fahmi T, Galanzha EI, Nolan JP, Basnakian AG, Zharov VP, Biris AS (2014) Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep 4(1–8):4752
    24.Huang YF, Huang KM, Chang HT (2006) Synthesis and characterization of Au core-Au-Ag shell nanoparticles from gold seed: impacts of glycine concentration and pH. J Colloid Interface Sci 301:145–154CrossRef
    25.Hu X, Wang T, Wang L, Dong S (2007) Surface-enhanced raman scattering of 4-aminothiophenol self-assembled monolayers in sand with structure with nanoparticle shape dependence: Off-surface plasmon resonance condition. J Phys Chem C 111:6962–6969CrossRef
    26.Zheng J, Zhou Y, Li X, Ji Y, Lu T, Gu R (2003) Surface-enhanced raman scattering of 4-aminothiophenol in assemblies of nanosized particles and the macroscopic surface of silver. Langmuir 19:632–636CrossRef
    27.Sivapalan ST, DeVetter BM, Yang TK, Dijk TV, Achulmerich MV, Carney PS, Bhargava R, Murphy CJ (2013) Off-resonance surface-enhanced raman spectroscopy from gold nanorod suspensions as a function of aspect ratio: not what we thought. ACS Nano 7:2099–2105CrossRef
    28.Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. PNAS 103:11838–11843CrossRef
    29.Barthoumi A, Zhang D, Tam F, Halas NJ (2008) Surface-enhanced raman spectroscopy of DNA. J Am Chem Soc 130:5523–5529CrossRef
    30.Chen Y, Munteanu AC, Huang YF, Phillips J, Zhu Z, Mavros M, Tan W (2009) Mapping receptor density on live cells by using fluorescence correlation spectroscopy. Chem Eur J 15:5327–5336CrossRef
  • 作者单位:Suwussa Bamrungsap (1)
    Alongkot Treetong (1)
    Chayachon Apiwat (1)
    Tuksadon Wuttikhun (1)
    Tararaj Dharakul (1) (2)

    1. National Science and Technology Development Agency (NSTDA), National Nanotechnology Center (NANOTEC), Pathumthani, 12120, Thailand
    2. Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
We describe nanotags suitable for both surface enhanced Raman scattering (SERS) and fluorescence detection and imaging. A fluorescently-labeled aptamer conjugated to gold-silver nanorods used for specific and sensitive detection of cervical cancer. NRs with different Au-Ag ratios were synthesized. The Raman reporter 4-aminothiophenol and fluorescently-labeled aptamers were assembled on the surface of NRs via a layer-by-layer process. The fluorescence and SERS signals can be generated independently using different excitation wavelengths, which can avoid the disturbance from each other. The nanotags were proven to be specific to the human protein tyrosine kinase-7 (PTK-7) expressed on Hela (cervical cancer) cells through aptamer-protein interaction. The binding of aptamers towards their targets induced the assembly of nanotags on the cell surface, resulting in strong fluorescence and SERS signals. However, the controls, randomized sequence oligonucleotide conjugated NRs, showed no detectable signal. Fluorescence and SERS mapping images were also performed to confirm targeting ability of the nanotags on the target cell membrane. The success of this method extends the feasibility of the dual mode nanotags for highly sensitive and specific cancer diagnostic.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700