Dynamics of spatial rigid–flexible multibody systems with uncertain interval parameters
详细信息    查看全文
  • 作者:Zhe Wang ; Qiang Tian ; Haiyan Hu
  • 关键词:Non ; intrusive computation methodology ; Absolute nodal coordinate formulation (ANCF) ; ANCF reference node (ANCF ; RN) ; Interval parameters ; Chebyshev sampling methods
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:84
  • 期:2
  • 页码:527-548
  • 全文大小:5,187 KB
  • 参考文献:1.Benosman, M., Vey, G.L.: Control of flexible manipulators: a survey. Robotica 22, 533–545 (2004)CrossRef
    2.Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators—a literature review. Mech. Mach. Theory 41, 749–777 (2006)MathSciNet CrossRef MATH
    3.Shabana, A.A.: Flexible multibody dynamics review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)MathSciNet CrossRef MATH
    4.Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016–031016-12 (2013)
    5.Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1, 3–12 (2006)CrossRef
    6.Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)MathSciNet CrossRef MATH
    7.Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2000)CrossRef
    8.Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2000)CrossRef
    9.Sugiyama, H., Suda, Y.: A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proc. IMechE Part K J. Multi-body Dyn. 221(2), 219–231 (2007)
    10.Shabana, A.A., Christensen, A.P.: Three-dimensional absolute nodal co-ordinate formulation plate problem. Int. J. Numer. Methods Eng. 40, 2775–2790 (1997)MathSciNet CrossRef MATH
    11.Dufva, K., Shabana, A.A.: Analysis of thin plate structures using the absolute nodal coordinate formulation. Proc. IMechE Part K J. Multi-body Dyn. 219, 345–355 (2005)
    12.Shabana, A. A.: ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. Technical Note (2014). doi: 10.​1177/​1464419314546342​
    13.Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10(1), 024504–024504-4 (2015)MathSciNet CrossRef
    14.Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81, 1841–1869 (2015)MathSciNet CrossRef
    15.Tian, Q., Xiao, Q.F., Sun, Y.L., Hu, H.Y., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)MathSciNet CrossRef
    16.Isukapalli, S.S.: Uncertainty Analysis of Transport-Transformation Models. The State University of New Jersey, New Brunswick (1999)
    17.Wu, J.L., Luo, Z., Zhang, Y.Q., Zhang, N., Chen, L.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013)MathSciNet CrossRef
    18.Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)CrossRef MATH
    19.Jensen, H.A., Valdebenito, M.A.: Reliability-based optimization of stochastic systems using line search. Comput. Methods Appl. Mech. Eng. 198, 3915–3924 (2009)MathSciNet CrossRef MATH
    20.Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response surface methodology: process and product optimization using designed experiments. Technometrics 38(3), 284–286 (1996)CrossRef MATH
    21.Ghanem, R., Spanos, P.: Polynomial chaos in stochastic finite element. J. Appl. Mech. 57(1), 197–202 (1990)CrossRef MATH
    22.Tatang, M.A.: Combined Stochastic and Deterministic Approach in Solving Stochastic Differential Equations. Carnegie Mellon University, Pittsburgh, Commonwealth of Pennsylvania (1992)
    23.Tatang, M.A.: Direct Incorporation of Uncertainty in Chemical and Environmental Engineering Systems. Massachusetts Institute of Technology, Cambridge (1995)
    24.Xiu, D., Karniadakis, G.E.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2002)MathSciNet CrossRef MATH
    25.Kewlani, G., Iagnemma, K.: A stochastic response surface approach to statistical prediction of mobile robot mobility. IEEE/RSJ. In: Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France. pp. 2234–2239 (2008)
    26.Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody Syst. Dyn. 15(4), 369–391 (2006)MathSciNet CrossRef MATH
    27.Sandu, C., Sandu, A., Ahmadian, M.: Modeling multibody systems with uncertainties. Part II: numerical applications. Multibody Syst. Dyn. 15(3), 241–262 (2006)MathSciNet CrossRef MATH
    28.Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4(2), 021008–021008-11 (2007)CrossRef
    29.Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY. J. Logic Algebr. Program. 64(1), 135–154 (2005)MathSciNet CrossRef MATH
    30.Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)MATH
    31.Gao, W.: Natural frequency and mode shape analysis of structures with uncertainty. Mech. Syst. Signal Process. 21(1), 24–39 (2007)CrossRef
    32.Wu, J.L., Zhang, Y.Q., Chen, L.P., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37(6), 4578–4591 (2013)MathSciNet CrossRef MATH
    33.Wu, J.L., Luo, Z., Zhang, Y.Q., Zhang, N., Chen, L.P.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013)MathSciNet CrossRef
    34.Alefeld, G.: Interval analysis: theory and applications. J. Comput. Appl. Math. 121, 421–464 (2000)MathSciNet CrossRef MATH
    35.Jackson, K.R., Nedialkov, N.S.: Some recent advances in validated methods for IVPs for ODEs. Appl. Numer. Math. 42(1–3), 269–284 (2002)MathSciNet CrossRef MATH
    36.Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5(1), 3–12 (1999)MathSciNet CrossRef MATH
    37.Wu, J.L., Zhao, Y., Chen, S.: An improved interval analysis method for uncertain structures. Struct. Eng. Mech. 20(6), 713–726 (2005)CrossRef
    38.Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)MathSciNet CrossRef MATH
    39.Warten, R.M.: Automatic step-size control for Rung–Kutta integration. IBM J. Res. Dev. 7(4), 340–341 (1963)MathSciNet CrossRef MATH
    40.Newmark, N.M.: A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 85, 67–94 (1959)
    41.Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. ASME J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007)CrossRef
    42.Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)MathSciNet CrossRef MATH
    43.Wu, J.L., Luo, Z., Zhang, N., Zhang, Y.Q.: A new interval uncertain optimization method for structures using Chebyshev surrogate models. Comput. Struct. 146, 185–196 (2015)CrossRef
    44.Buras, A.J., Jamin, M., Lautenbacher, M.: A 1996 analysis of the CP. Violating ratio \(\varepsilon ^{\prime }/\varepsilon \) . Phys. Lett. B. 389(4), 749–756 (1996)
    45.Wu, J.L., Luo, Z., Zhang, N., Zhang, Y.Q.: A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials. Eng. Optim. 47(9), 1264–1288 (2014)MathSciNet CrossRef
    46.Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, Berlin (2012)
    47.Jalón, J.G.D.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18(1), 15–33 (2007)MathSciNet CrossRef MATH
    48.García-Vallejo, D., Escalona, J.L., Mayo, J., Domínguez, J.: Describing rigid–flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34(1–2), 75–94 (2003)MathSciNet CrossRef MATH
    49.Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)CrossRef MATH
    50.Sopanen, J., Mikkola, A.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003)CrossRef MATH
    51.Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Sys. Dyn. 20, 359–384 (2008)MathSciNet CrossRef MATH
    52.Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1019–1033 (2014)CrossRef
    53.García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid–flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20(1), 1–28 (2008)MathSciNet CrossRef MATH
    54.Hong, J.Z.: Computational Dynamics of Multibody Systems. Higher Education Press, Beijing (1999). (in Chinese)
    55.Liu, C., Tian, Q., Hu, H.Y., García-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid–flexible multibody systems. Nonlinear Dyn. 69, 127–147 (2012)MathSciNet CrossRef MATH
    56.Liu, C., Tian, Q., Hu, H.Y.: Dynamics and control of a spatial rigid–flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)CrossRef
    57.Jeffery, J.: Numerical Analysis and Scientific Computation. Addison Wesley, Boston (2004)
    58.Liu, C., Tian, Q., Hu, H.Y.: Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26, 283–305 (2011)CrossRef MATH
    59.Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54, 283–296 (2008)MathSciNet CrossRef MATH
    60.Tian, Q., Zhang, Y.Q., Chen, L.P., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4, 021009 (2009)CrossRef
    61.Shabana, A.A., Hussein, B.: A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: application to multibody systems. J. Sound Vib. 327, 557–563 (2009)CrossRef
    62.Hussein, B., Shabana, A.A.: Sparse matrix implicit numerical integration of the stiff differential/algebraic equation: implementation. Nonlinear Dyn. 65, 369–382 (2011)MathSciNet CrossRef
    63.Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. J. Mech. Appl. Math. 60, 371–375 (1993)MathSciNet MATH
    64.Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)CrossRef MATH
    65.Tian, Q., Zhang, Y.Q., Chen, L.P., Flores, P.: Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct. 87, 913–929 (2009)CrossRef
    66.Liu, Z.Z., Wang, T.S., Li, J.F.: A trigonometric interval method for dynamic response analysis of uncertain nonlinear systems. Sci. China Phys. Mech. Astron. 58, 044501-1–044501-13 (2015)
  • 作者单位:Zhe Wang (1)
    Qiang Tian (1)
    Haiyan Hu (1)

    1. MOE Key Laboratory of Dynamics and Control of Flight Vehicle, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
A non-intrusive computation methodology is proposed to study the dynamics of rigid–flexible multibody systems with a large number of uncertain interval parameters. The rigid–flexible multibody system is meshed by using a unified mesh of the absolute nodal coordinate formulation (ANCF). That is, the flexible parts are meshed by using the finite elements of the ANCF, while the rigid parts are described via the ANCF reference nodes (ANCF-RNs). Firstly, the interval differential-algebraic equations are directly transformed into the nonlinear interval algebraic equations by using the generalized-alpha algorithm. Then, the Chebyshev sampling methods, including Chebyshev tensor product sampling method and Chebyshev collocation method, are used to transform the nonlinear interval algebraic equations into sets of nonlinear algebraic equations with deterministic sampling parameters. The proposed computation methodology is non-intrusive because the original generalized-alpha algorithm is not amended. OpenMP directives are also used to parallelize the solving process of these deterministic nonlinear algebraic equations. To circumvent the interval explosion problem and maintain computation efficiency, the scanning method is used to determine the upper and lower bounds of the deducted Chebyshev surrogate models. Finally, two numerical examples are studied to validate the proposed methodology. The first example is used to check the effectiveness of the proposed methodology. And the second one of a complex rigid–flexible robot with uncertain interval parameters shows the effectiveness of the proposed computation methodology in the dynamics analysis of complicated spatial rigid–flexible multibody systems with a large number of uncertain interval parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700